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Abstract — This paper presents a simple SRGM, the 

Burr Type XII Non Homogeneous Poisson Process 
(NHPP) model is used as a control mechanism 

based on order statistics of the cumulative quantity 

between observations of time domain failure data. 

This model has the ability of modeling both 

reliability improving and deteriorating systems and 

has gained wide acceptance. The Maximum 

Likelihood Estimation (MLE) method is used to 

derive the point estimators. We have applied the 

model to sets of existing software failure datasets to 

assess the failure process using SPC. 
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I. INTRODUCTION 

Modern society relies heavily on the correct 

operation of software and from user„s point of view, 

the software plays an important role in systems of 

both safety-critical and civil applications. Software 

Reliability plays an important role in software 

quality. As more and more software is creeping into 

the embedded system, reliability has become an 
essential characteristic for the software. There are 

many software reliability models that are based on 

the times of occurrences of errors in debugging of 

the software. It is also possible to do asymptotic 

likelihood inference for software reliability models 

based on order statistics or Non – Homogeneous 

Poisson Processes (NHPP) with asymptotic 

confidence levels for interval estimates of 

parameters. In particular, interval estimates from 

these models are obtained for the conditional failure 

rate of the software, given the data from the 

debugging process. The data can be either grouped 
or ungrouped. 

 Software Reliability can prevent major 

faults that have the possibility of taking human life,  

money and time. For this a number of models have 

been developed for better predictions. A common  

 

approach for measuring software reliability is by 

using an analytical model whose parameters are 

generally estimated from available software failure 

data. Reliability quantities have been defined with 

respect to time, although it is possible to define them 

with respect to other variables. In reliability study 

there are two characteristics of a random process: 1) 
the probability distribution of the random variables, 

i.e., Poisson and 2) the variation of the process with 

time. A random process whose probability 

distribution varies with time is called non 

homogeneous. The random process for time 

variation we can define two functions, the mean 

value function m(t), as the average cumulative 

failures associated with each time point and the 

failure intensity function as the rate of change of 

mean value function. 

Order statistics are used in a wide variety of 
practical situations. Their use in characterization 

problems, detection of outliers, linear estimation, 

study of system reliability, life-testing, survival 

analysis, data compression and many other fields can 

be seen from the many books example [1][2]. 

This paper presents a control mechanism is 

proposed which is based on the order statistics of 

cumulative quantity between observations of time 

domain failure data using mean value function of 

Burr Type XII distribution which is based on NHPP. 

The Burr Type XII distribution model with order 

statistics approach is applied on live data sets and the 
results are exhibited at the end of this paper. 

 

II. ORDER STATISTICS 

 

Order statistics deals with properties and 

applications of ordered random variables and 

functions of these variables. The use of order 

statistics is significant when inter failure time is less 

or failures are frequent. Let A denote a continuous 

random variable with probability density function, 

f(a) and cumulative distribution function, F(a), and 
let (A1 , A2 , …, Ak) denote a random sample of 

size k drawn on A. The original sample observations 

may be unordered with respect to magnitude. A 

transformation is required to produce a 

corresponding ordered sample. Let (A(1) , A(2) , …, 

A(k)) denote the ordered random sample such that 

A(1) < A(2) < … < A(k); then (A(1), A(2), …, A(k)) 

are collectively known as the order statistics derived 

from the parent A. The various distributional 

characteristics can be known from Balakrishnan and 

Cohen [1]. 
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We compute the software failures process 

through Failure control chart based on the 

cumulative inter failure data. The transformation 

being applied is, the failure data is made into groups 

of 4, 5 and then cumulated. The inter failure time 

data represent the time laps between every two 
consecutive failures. On the other hand if a 

reasonable waiting time for failures is not a serious 

problem we can group the inter failure time data into 

non overlapping successive subgroups of size 4 or 5 

and add the failures times with needs of groups. For 

instance if a data of 100 inter failure times are 

available, we can group them into 20 disjoint 

subgroups of size 5. The sum totals in each subgroup 

would represent the time laps between every 5th 

failures. In the theory of statistics such a subtotal is 

defined as the 5th order statistics in a sample of size 

5. In general for inter failure data of size „m‟ if „r‟ is 
any natural number less than m and preferably a 

factor of „m‟ we can expediently divide the data into 

„p‟ disjoint subgroups(p=m/r) and the cumulative 

total meets subgroup indicate the time between every 

rth failure.  

The probability distribution of such a time 

laps would be better in the r th order statistic in a 

subgroup of size „r‟. This would be equal to the rth 

power of the distribution function of the original 

variable. The parameters of the mean value function 

with the revised distribution function would 
determine the control limits of a new control chart 

involving order statistics. Hence they need a separate 

study.  

In the present paper we have taken r = 4, 5 

and the Burr Type XII model. Choice of r beyond 5 

may create an overly long waiting time for the 

occurrence of every rth failure. „a‟,‟b‟ and „c‟ are 

Maximum Likelyhood Estimates (MLEs) of 

parameters and the values can be calculated using 

iterative method for the given cumulative time 

between failures data. Using „a‟ and „b‟ and „c‟ 

values we can compute m(t). 
 

III. IIUSTRATING THE MLE 

METHOD 

 

Burr Type XII Model 

This paper proposes estimation of software 

reliability using order statistics approach based on 

Burr Type XII distribution model. The Burr 

distribution has a flexible shape and controllable 

scale and location which makes it appealing to fit to 
data. It is frequently used to model insurance claim 

sizes. The mean value function and intensity 

function of Burr Type XII NHPP model are as 

follows [8][15]. 

The Cumulative distributive function (CDF) is given 

by  

              
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The Probability Density Function (PDF) of Burr XII 

distribution are given, respectively by  
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Mathematical Derivation for Parameter Estimation 

We develop expressions to estimate the 
parameters of the Burr type XII model based on time 
domain data using order statistics approach. 
Parameter estimation is very significant in software 
reliability prediction. Once the analytical solution 
form is known for a given model, parameter 
estimation is achieved by applying a well-known 
estimation, Maximum Likelihood Estimation 
(MLE). 

The main idea behind Maximum Likelihood 
parameter assessment is to decide the parameters that 
maximize the probability (likelihood) of the 
specimen data. In other words, MLE methods are 
versatile and applicable to most models and for 
different types of data.  

The mean value function of Burr type XII model is 

given by [8] 

 ( ) 1 1 , 0
b

cm t a t t
    

  
                 (1)      

The parameters a, b, c are estimated with Maximum 

Likelihood (ML) estimation. In order to group the 

Time domain data into non overlapping successive 

sub groups of size r, we need to take ( )m t  to the 

power r. 

  ( ) 1 1
r

b
cm t a t

   
  

                             (2) 

 

To get the estimates of „a‟, „b‟ and „c‟ for a sample 

of n units, the likelihood function must be obtained 

first [11]. 
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Differentiating Log L with respect to „a‟, and 

equating to 0 (i.e., 0
LogL

a





) we get 
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Differentiating Log L with respect to „b‟ and equating 

to „0‟.  
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Again differentiating ( )g b  with respect to „b‟ and 

equating to 0 
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Differentiating Log L with respect to „c‟ and equating 

to „0‟. 
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Again differentiating ( )g b  with respect to „b‟ and 
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The parameters „b‟ and „c‟ are estimated by iterative 

Newton- Raphson using 
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Which are substituted in Eq.(4) to determine „a‟. 

 

Estimated Parameters and their Control Limits 

 

[9] estimated the parameters using maximum 

likelihood estimation using interfailure time data. 

The control limits for the chart are defined in such a 

manner that the process is considered to be out of 

control when the time to observe exactly one failure 

is less than LCL or greater than UCL. Our aim is to 

monitor the failure process and detect any change of 

the intensity parameter. 
When the process is normal, there is a 

chance for this to happen and it is commonly known 

as false alarm. The traditional false alarm probability 

is to set to be 0.27% although any other false alarm 

probability can be used [12]. The actual acceptable 

false alarm probability should in fact depend on the 

actual product or process [13].  

The estimated parameters and the 

calculated control limits of the Failure control Chart 

for Musa and SYS2 data sets with the false alarm 

risk, α = 0.0027 are given in Table 1. Using the 
estimated parameters and the estimated limits, we 

calculated the control limits UCL = ( )um t  , CL= 
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( )cm t  and LCL= ( )lm t . They are used to find 

whether the software process is in control or not. 
The estimated values of „a‟ and „b‟ and „c‟ and their 

control limits for both 4th -order and 5th -order 

statistics are as follows. 

 

Calculation of control limits 
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Table 1: Parameter estimates and Control limits of 4 & 5 order 

Data Set Order 
Estimated Parameters Control Limits 

a b c UCL CL LCL 

Musa 4 8.50 0.927761 1.000346 8.488525 4.250000 0.011471 

 5 5.40 0.939095 1.000277 5.392710 2.700000 0.007289 

Sys 2 4 5.25 0.901900 1.000173 5.242913 2.624999 0.007089 

 5 3.40 0.919045 1.000135 3.395410 1.6999999 0.004589 

 

Distribution of Time between Failures 

 

The mean value successive differences of 

rth order cumulative time between failures data of 

the considered data sets are tabulated in Table 2 to 5. 

Considering the mean value successive differences 

on y axis, failure numbers on x axis and the control 

limits on Failure control chart, we obtained Figure 1 

to 4. A point below the control limit ( )lm t  indicates 

an alarming signal. A point above the control limit 

( )um t indicates better quality. If the points are falling 

within the control limits it indicates the software 

process is in stable. 

 

 

 

Table 2: Successive Differences of 4
th

 order mean values of Musa 

F.No 
4-order 

C_TBF 
m(t) 

Successive 

Differences 
F.No 

4-order 

C_TBF 
m(t) 

Successive 

Differences 

1 227 8.444910865 0.025473171 18 16358 8.498955984 0.000102605 

2 444 8.470384036 0.011594542 19 18287 8.499058589 9.72543E-05 

3 759 8.481978577 0.004752661 20 20567 8.499155843 0.000116243 

4 1056 8.486731238 0.005882555 21 24127 8.499272086 0.000103446 

5 1986 8.492613794 0.001785012 22 28460 8.499375533 7.09241E-05 

6 2676 8.494398806 0.002095267 23 32408 8.499446457 7.19499E-05 

7 4434 8.496494073 0.000420743 24 37654 8.499518407 4.65714E-05 

8 5089 8.496914816 0.000159693 25 42015 8.499564978 2.68286E-06 

9 5389 8.497074509 0.000424165 26 42296 8.499567661 5.00806E-05 
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10 6380 8.497498674 0.000334377 27 48296 8.499617742 2.56036E-05 

11 7447 8.497833051 0.000120836 28 52042 8.499643345 8.68534E-06 

12 7922 8.497953886 0.000436267 29 53443 8.499652031 1.74262E-05 

13 10258 8.498390153 0.000122963 30 56485 8.499669457 3.03022E-05 

14 11175 8.498513115 0.000152686 31 62651 8.499699759 9.63903E-06 

15 12559 8.498665801 8.53239E-05 32 64893 8.499709398 3.98085E-05 

16 13486 8.498751125 0.000136472 33 76057 8.499749207 3.33167E-05 

17 15277 8.498887597 6.8387E-05 34 88683 8.499782523  
 

 

 
 
 

Fig 1: Failure Control Chart for Musa Dataset of order 4 

 

Table 3: Successive Differences of 5
th

 order mean values of Musa Dataset 

F.No 5-order 

C_TBF 

m(t) Successive 

Differences 

F.No 5-order 

C_TBF 

m(t) Successive 

Differences 

1 342 5.377568698 0.008556681 15 17758 5.399449597 7.09183E-05 
2 571 5.38612538 0.005418403 16 20567 5.399520515 9.35047E-05 
3 968 5.391543783 0.004148817 17 25910 5.39961402 4.27728E-05 
4 1986 5.3956926 0.001470152 18 29361 5.399656793 7.14374E-05 
5 3098 5.397162753 0.001043802 19 37642 5.39972823 2.66574E-05 
6 5049 5.398206554 8.71412E-05 20 42015 5.399754887 1.72349E-05 
7 5324 5.398293696 0.00026667 21 45406 5.399772122 1.7414E-05 
8 6380 5.398560366 0.000224782 22 49416 5.399789536 1.45114E-05 
9 7644 5.398785148 0.000278761 23 53321 5.399804048 1.03283E-05 

10 10089 5.399063909 7.1677E-05 24 56485 5.399814376 1.72389E-05 
11 10982 5.399135586 0.000102358 25 62661 5.399831615 2.50181E-05 
12 12559 5.399237944 0.000105074 26 74364 5.399856633 1.63088E-05 
13 14708 5.399343018 5.64761E-05 27 84566 5.399872942  
14 16185 5.399399494 5.01026E-05     
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Fig 2: Failure Control Chart for Musa Dataset of order 5 

 

Table 4: Successive Differences of 4
th

 order mean values of Sys2 Daatset 

F.No 4-order 

C_TBF 

m(t) Successive 

Differences 

F.No 4-order 

C_TBF 

m(t) Successive 

Differences 

1 1576 5.243152433 0.003986834 12 34467 5.249576205 5.94215E-05 
2 4149 5.247139267 0.000754775 13 40751 5.249635627 5.15662E-05 
3 5827 5.247894041 0.000820303 14 48262 5.249687193 2.64253E-05 
4 10071 5.248714344 0.000174264 15 53223 5.249713618 1.35451E-05 
5 11836 5.248888608 0.000228678 16 56160 5.249727163 2.17029E-05 
6 15280 5.249117286 7.497E-05 17 61565 5.249748866 2.69314E-05 
7 16860 5.249192256 0.00010168 18 69815 5.249775797 3.2021E-05 
8 19572 5.249293936 0.0001148 19 82822 5.249807818 1.5982E-05 
9 23827 5.249408736 8.42957E-05 20 91190 5.2498238 1.0623E-05 

10 28257 5.249493032 5.23489E-05 21 97698 5.249834423  
11 31886 5.249545381 3.08239E-05     

 

 

 
 

Fig 3: Failure Control Chart for Sys2 Dataset of order 4 

 

 

 

 

 

 

UCL=5.39271

CL=2.70000

LCL 0.00729

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

M
ea

n
 V

al
u

e 
Su

cc
es

si
ve

 
D

if
fe

re
n

ce
s

Failure Number

Mean Value Chart

UCL 5.24291CL 2.62500

LCL 0.00709

0.0000

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n
 V

al
u

e 
Su

cc
es

si
ve

 
D

if
fe

re
n

ce
s

Failure Number

Mean Value Chart



International Journal of Engineering Trends and Technology (IJETT) – Volume 49 Number 1 July 2017 

ISSN: 2231-5381                    http://www.ijettjournal.org                                      Page 39 

Table 5: Successive Differences of 5
th

 order mean values of Sys2 Dataset 

F.No 5-order 

C_TBF 

m(t) Successive 

Differences 

F.No 5-order 

C_TBF 

m(t) Successive 

Differences 

1 2610 3.397540449 0.00094882 10 39856 3.399799166 2.53111E-05 
2 

4436 3.398489269 0.000648192 
11 

46147 3.399824477 2.15703E-05 
3 

8163 3.399137461 0.00024951 
12 

53223 3.399846047 1.39037E-05 
4 

11836 3.399386971 0.000139776 
13 

58996 3.399859951 1.60915E-05 
5 

15685 3.399526746 5.61415E-05 
14 

67374 3.399876043 1.82326E-05 
6 

17995 3.399582888 7.35854E-05 
15 

80106 3.399894275 1.18726E-05 
7 

22226 3.399656473 6.8023E-05 
16 

91190 3.399906148 6.5781E-06 
8 

28257 3.399724496 3.2183E-05 
17 

98692 3.399912726  
9 

32346 3.399756679 4.24866E-05 
 

   
 

 

 
 

Fig 4: Failure Control Chart for Sys2 Dataset of order 5 

 

 
 

 

IV. CONCLUSIONS 

    The 4 and 5 order failure counts are plotted 

through the estimated mean value function against 

the rth failure (i.e 4 & 5) serial order. The MLE 

method is used to estimate the parameters. The 

successive differences of the Musa dataset are 

fairly fluctuating within the control limits and the 

successive differences of Sys2 dataset have gone 

out of control limits. Hence we conclude that our 
method of estimation and the control chart are 

giving a Positive recommendation for their use in 

finding out preferable control process or desirable 

out of control signal. 
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