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Abstract— The objective of this study is to predict 

changes in formation thickness, permeability, and 

porosity, as a function of fluid pressure. The methodology 

depends on well test interpretation by type curve 

matching. Changes in formation permeability may lead to 

poor well performance. Compaction may lead to reduced 

well integrity, notably for vertical and deviated wells.  

Then, there may be additional relative movement between 

the well and the formation in comparison with 

conventional reservoirs. Use of well-known 

transformations leads to diffusivity equations of linear 

appearance. Many solutions are available. Corresponding 

pressure solutions may be obtained by an inverse 

transformation.We find that, for a deforming reservoir, 

analysis based on the method of permeability modulus 

gives the composite (sum) elastic modulus.By 

interpretation of MDH type curves for build-up tests, we 

quantify the values of the elasticity moduli for both the 

thickness and permeability. 
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I. INTRODUCTION 

Most reservoirs may be thought about as rigid 

within engineering accuracy. For some reservoirs, 

this assumption may not be valid. Changes in 

formation permeability and thickness may lead to 

poor well performance and possible reduced well 

integrity. The basic assumptions of this study are: 

the volume of grains remains constant during 

deformation, no hysteresis and that all pressure 

dependent variables may be described by 

exponential functions of pressure. Then, the non-

linearites show up as a sum of quadratic pressure 

gradient terms, characterized by a composite 

modulus, Matthews and Russell [1]. Use of a 

logarithmic transformation or the pseudo-pressure 

approach leads to a diffusivity equations of linear 

appearance. 

The transformed equation, however, is still non-

linear since the diffusivity depends on pressure. 

Hence, perturbation analysis may be necessary to 

improve accuracy. Raghavan et al. [2] proposed a 

well test model for pressure dependent rock and 

fluid properties by use of the pseudo-pressure 

approach. Their method allows for arbitrary pressure 

functions to characterize the rock properties. Pedrosa 

[3] assumed an exponential relationship between 

permeability and fluid pressure.  Kikani and Pedrosa 

[4] matched the model predictions to real data. They 

showed that a constant dimensionless permeability 

modulus may be quantified by type curve analysis 

provided the initial permeability can be obtained. 

Their initial permeability value was estimated by use 

of a conventional two-permeability model. If a 

correct semi-log straight line may be identified, the 

initial permeability may be estimated by 

conventional methods. Then, well testing by type 

curve analysis alone becomes feasible. They warned 

against uncritical use of their method. Their study 

has inspired a lotof follow-up studies during the last 

decades. They argued that a first order perturbation, 

or even a zero order solution, may be of sufficient 

accuracy for many engineering calculations. As such, 

we investigate the zero and first order solutions only. 

If higher accuracy is required, second order 

perturbation techniques are available [4]. 

Zhang and Ambastha [5] investigated the validity 

of Kikani and Pedrosa [4] solutions by a finite 

difference numerical model. The authors found that 

the method works best for drawdown solutions, but 

can be used for small values of the dimensionless 

permeability modulus. They proposed a stepwise 

constant permeability modulus model to improve the 

match to published laboratory curves. Ozkan and 

Raghavan [6] discussed the application of Laplace 

transformations to facilitate solutions to the linear 

diffusivity equation. They presented many Laplace 

space solutions. These are available for stress-

sensitive reservoirs with zero order accuracy. 

Jelmert and Selseng [7] showed that the 

logarithmic transformation method and the pseudo-

pressure approach is equivalent for exponential 

pressure functions. They used normalized 

permeability change as dependent variable. They 

pointed out that possible negative values are 

unphysical.  

Once the value of an elastic modulus is known, 

the dynamic behaviour of the corresponding variable 

is also known [8]. The composite modulus technique 

can also be used for well performance calculations 

[9]. 

II. THEORY 

We assume exponential variation with pressure. 

The elastic modulus of each variable shows up in the 

exponent as a factor to the pressure change. 
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In addition, we assume constant grain volume, the 

compaction is limited to the vertical direction and 

that flow due to changing thickness may be 

neglected and the validity of Darcy’s law,Raghavan 

et al. [2]. Then: 
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In Appendix A, we obtain the following 

simplified equation, eq.(A.12): 
2
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An approximate solution to the above equation, 

which is still non-linear, may be obtained by the 

method of perturbations. Pedrosa [3] proposed the 

following substitution: 
1
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D
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First, we consider the line-source solution. 

Substitution ofeq.(5) into eq. (4), eq.(B.5), eq.(B.6) 

and eq.(B.7) yields: 
2
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This is the Pedrosa [3] problem, but with the 

composite modulus rather than the permeability 

modulus as perturbation parameter. As such, they 

share the samesolutions. 

He [3] proposed the following perturbation 

scheme: 
2 3
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Expanding the coefficient to the time derivative, 

eq.(6): 
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1                                  (11)

1
D D D

D

 

The perturbation scheme starts with the zero order 

solution, which has to satisfy eq.(7)- eq.(9), and 

eq.(12). 
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The solutions are, [3]: 
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For build-up:  
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which leads to: 
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The zero-order pressure solution becomes:  

0 1

1

1 1
ln 1

2 4

1
                                                             (21)

2 4

D
Dws D

D D D

D

D

p t E
t t

E
t

 

and the first order solution, which rather lengthy, 

may be obtained by: 
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The zero and first order pressure solutions may be 

plotted against 
Dt in a log-log coordinate system, 

which is the MDH type curve, see Fig. 2. Kikani and 

Pedrosa[4]argued that the first order perturbation is 

multiplied by
2

D , which usually assumes small 

values, hence the first order perturbation may be 

neglected for many engineering calculations.  

 

The exponential integral has a logarithmic 

approximation, then eq.(21) will simplify to: 
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The traditional Horner equation is included in 

eq.(23) as a limiting behavior. 
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The logarithmic derivative of eq.(23) becomes: 
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In many cases of practical interest, it is 

convenient to obtain Laplace space solutions and 

then do the inversion back to time domain by a 

numerical method.  

Suppose the zero order unit step rate-solutions,

0wc
 are known. Then, for each constant rate solution, 

the variable rate to the zero order solution can be 

obtained by, [10]:  
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The well may assume many shapes of simple 

geometry. 
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The equations may be numerically inverted back 

to time domain: 
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The timet is the time since the start of the test 

withthe shut-in time t  included. With known zero-

order solution, one may improve the accuracy by 

perturbations as explained above.  

III. WELL TEST INTERPRETATION 

Kikani and Pedrosa [4] showed how to determine 

the permeability modulus by type curve matching. 

We use the same technique to obtain the composite 

modulus. If the field curve and the type curve can be 

matched, this observation supports the assumption of 

exponential variation with pressure.   

Assumption: No wellbore storage or skin.The 

initial permeability-thickness product, 
i ik h may be 

estimated from the pressure match or other sources. 

Suppose it can be obtained from the pressure match, 

then: 

                                      (29)
2
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This match, however, may be hard to achieve. If 

the permeability-thickness product is available from 

another source, the dimensionless elasticity modulus,

D
 is available as a parameter from the matched 

type curve, Fig. 1. From eq.(A4) we have: 
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Fig. 1  Comparison of model and real data 

 

From the time match, we have: 
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Which gives: 
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The field curve corresponding to Fig. 1 has the 

disadvantage that the Horner ratio is dimensionless. 

AMDH type curve,on the other hand, permits a 

dimensional horizontal axis in the field curve. Then, 

additional information becomes available. 

 

 

Fig.2 Dimensionless pressure and pressure derivative, MDH type 

curve 

 

Combination of eq.(1) and eq.(32) leads to: 
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Fig.3Normalized thickness as function of dimensionlesstime 

 

The normalized thickness may be plotted as 

afunction of pressure or time. The latter has been 

plotted in Fig. 3.But from eq.(30): 
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Then 
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The estimated normalized permeability becomes: 
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Fig.4Normalized permeability as function of dimensionlesstime 

 

IV. VERIFICATION OF NUMERICAL RESULTS 

We found that the generalized equations for 

deformable reservoirs are equivalent to those derived 

by Kikani and Pedros [4]. Hence, their results may 

be used as benchmarks. Our figures 1, 2 and 5 were 

compared against their figures 5, 4 and 7, 

respectively and we conclude that the results agrees 

well within the accuracy of visual inspection.  

 

 

Fig. 5: Effect of wellbore storage and skin 

 

V. CONCLUSIONS 

 A well-known well test interpretation technique 

for stress-sensitive reservoirs has been generalized to 

account for thickness, porosity and permeability 

changes.  

The elastic moduli forpermeability and thickness 

may be obtained. With known elastic moduli, the 

dynamic behavior of the corresponding variables are 

also known. 

For a deforming reservoir, analysis based on 

Pedrosa’s method gives the total elastic modulus 

rather than the permeability modulus.  
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The proposed methodology depends on known 

initial condition for the permeability thickness 

product. If a semi-log straight line shows up in a 

MDH- or Horner plot, the initial condition may be 

established by well test interpretation.  

 

NOMENCLATURE 

B Formation volume factor 

C Wellbore storage constant, 1Pa  

c Compressibilty, 1Pa  

nT           Normalized transmissibility function, 

given by eq.(A3) 

nT        Change in normalized transmissibility 

from the reference value, 1n nT T  

h           Thickness, m  

ik           Initial permeability, 2m  

p           Fluid pressure, Pa  

q            Flow rate, 3 /Sm s  

r            Radial distance, m  

Dr           Dimensionless distance, /D wr r r  

S            Mechanical skin factor 

s             Laplace variable 

Dt           Dimensionless time 

Dt        Dimensionless shut-in time 

 

Greek letters 

      Viscosity,  Pa s  

       Permeability modulus, 1Pa  

Porosity 

Composite modulus, eq.(A4) 

Viscosity modulus, 1Pa  

Thickness modulus, 1Pa  

Transformed variable, eq.(5) 

     Density, 3 kg m  

 

Indices 

c      Constant rate condition 

ma Matrix  

s      Shut-in 

Tc    Value obtained by type curve analysis 

v      Variable rate conditions 

w     Variable evaluated at wr  

l      Fluid 

0,1   Order of perturbation 

 

APPENDIX A 

The diffusivity equation for consolidated media is 

[2]: 
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Index n denotes normalized to initial condition. 

We define a composite variable,
n

T p  and assume 

exponential variation with pressure of each 

individual variable. Then: 
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Integration by parts gives composite elastic 

modulus simply as the sum of the individual moduli: 
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Substitution into eq.(A1) yields: 
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After some manipulations, we obtain: 
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Assumption:
l mac c cl

 

 

Then, the above equation will reduce to: 
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Substitution of eq.(A8)-(A11) into eq. (A7) yields: 
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APPENDIX B 

We consider a line-source well in an infinite 

reservoir. The initial condition is: 
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The boundary conditions are: 

 

External: 
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Line-source boundary condition: 
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Substitution of the dimensionless variables into 

eq.(B1), eq.(B2) and eq.(B4) yields: 

 

 

0                                                                           (B5)Dp  

 

lim  , 0                                                            (B6)
r

p r t  

0
lim  1                                              (B7)D Dp D

D
r

D

p
e r

r
 

REFERENCES 

[1] C. S. Matthews, and D. G. RussellPressure Buildup and 
Flow Tests in wells. , Henry L. Doherty Series, Monograph 

1, Dallas, TX: Society of petroleum engineers of 

AIME1977vol. 1 
[2] R. Raghavan, et al. “An Investigation by Numerical 

Methods of the Effect of Pressure-Dependent Rock and 

Fluid Properties on Well Tests,” SPEJournal, June vol. 
253, pp.267-571, June. 1972 

[3] O. A. Pedrosa, “Pressure Transient Response in Stress-
Sensitive Formations,” in Proc. California Regional 

Meeting , 1986, paper SPE 15115, p.203 

[4] J. Kikani, and O. A. Pedrosa, “Perturbation Analysis of 

Stress-Sensitive Reservoirs,” In SPE Formation Evaluation, 

vol. 6,pp. 379-386, Sept. 1991. 

[5] M. Y. Zhang and A. K. Ambastha, “New Insights in 
Pressure-Transient Analysis for Stress-Sensitive 

Reservoirs”, in Proc. SPE ATCE, paper SPE 28420. p. 617 

[6] E. Ozkan and R. Raghavan, “New Solutions for Well-Test-
Analyses Problem: Part1- Analytical Considerations. SPE 

Formation Evaluation, pp. 359-368, 1991 

[7] T. A. Jelmert, and H. Selseng, H. “Pressure 
transientbehavior of stress-sensitive reservoirs.” Proc.SPE 

Latin  

American and Caribbean Petroleum Engineering 

Conference.  Paper   SPE 38970, 1997. 

[8] T. A. Jelmert and H. Selseng. “Horner plot aids analysis in 

stress-sensitive reservoirs”. Oil and Gas Journal, vol. 96, p 

67-68 and 77, June 29, 1998 
[9] T. A. Jelmert. “Composite elastic modulus aids well 

performance and permeability predictions”. IJETT 

International Journal of Engineering Trends and 
Technology, vol. 29 Part 1, pp. 7-12, Nov. 2015 

[10] C. C. Chen and R. Raghavan, “An approach to handle 

discontinuities by the Stehfest algorithm”. InSPEJournal, 
pp. 363-368, 1991 

 

 

http://www.ijettjournal.org/

