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ABSTRACT — Software has been developed for 

stress and Mohr’s circle computation, transformation 

and sensitivity analysis. It is developed to help 

students visualize the state of stress at a point and to 

understand the nature and effects of stress 

transformation which is one of the leading importance 

phenomena in the field of engineering.  The software 

shows the effect of stresses on materials inclined at 

different angles and subjected to axial compressive 

loading. The software is developed in java 

programming language, because it is simple, object-

oriented and user friendly. The developed software 

calculates normal stress, tangential stress, resultant 

stress as well as obliquity of resultant stress with 

changing orientation while Mohr circle is used to 

support the graphics. It also shows the behaviour of 

stresses on materials as the angle of inclination 

varies.  

 
Keywords — Stress, Software, Stress transformation, 

Mohr’s Circle, Principal stress, Tangential stress, 
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I. INTRODUCTION  

Since antiquated times, people have been 

deliberately mindful of stress inside materials. Until 

the 17th century, the comprehension of stress was to a 

great extent natural and exact; but then it brought 

about some shockingly complex innovation, similar to 

the composite bow and glass blowing (Wai-Fah and 

Baladi, 1985). More than a few centuries, modelers 

and manufacturers, specifically, figured out how to 

assemble precisely formed wood shafts and stone 

pieces to withstand, transmit, and disperse stress in the 

best way, with astute gadgets, for example, the 

capitals, curves, vaults, trusses and the flying braces of 

Gothic houses of prayer (Dieter, 1989). Russell et al., 

(1992) defined stress as a physical quantity that 

expresses the internal forces that neighboring particles 

of a continuous material exert on each other. On the 

other hand, Brady and Brown (1993) stated that stress 

inside a body may arise by various mechanisms, such 

as reaction to external forces applied to the bulk 

material (like gravity) or to its surface (like contact 

forces, external pressure, or friction). Similarly, stress 

might exist in the absence of external forces; such 

built-in stress is important, for example, in prestressed 

concrete and tempered glass (Davis and Selvadurai 

1996). 

The computation and transformation of normal 

stress, tangential stress, resultant stress, maximum 

shear stress and obliquity of the resultant stress among 

coordinate systems is important in static and structural 

analysis for engineering students. Late in the last 

century, Mohr introduced a graphical construction to 

assist in the process. At Mohr’s time, the technology 

for graphical construction was drafting and any 

technology for computation was quite tedious 

compared with modern tools. His graphical approach 

to constructing his circle could be used to find 

approximate values for transformed stresses and 

thereby save what, at the time, would have been great 

computational effort. Indeed, as recently as 1972, the 

construction of Mohr’s circle was couched in drafting 

terminology (Timoshenko, 1972). 

 

The computation and transformation of normal 

stress, tangential stress, resultant stress, maximum 

shear stress, obliquity of the resultant stress and 

Mohr’s circle have been a burden to students. They 

found it difficult in obtaining accurate results. Also 

they spend a lot of time in calculating for different 

values of stresses. Mohr’s circle is among the most 

difficult topics for students to comprehend, based on 

survey of their examination results. This was in spite 

of having spent extra time in receiving lectures many 

of them still find it difficult in solving problems on 

stresses and Mohr circle. Students also find it difficult 

to know the relationship between stress and angle of 

inclination of a body using a straight line or curve line 

graph. In support of the above, Stephen (1996) noted 

that Mohr’s circle is among the most difficult topics 

for students to comprehend, based on survey of their 

examination results. In his study, students in the 

engineering department’s strength of materials and 

mechanics of materials courses were surveyed in at 

the end of both the first and second semester. This was 

in spite of having spent extra time in receiving lectures 

many of them still find it difficult in solving problems 

on stresses and Mohr circle. Similarly, James (2012) 

has noted that it is not clear at first learning why one 

would want what is fundamentally the same 

information in a different coordinate system. The 

above informed the development of the software.  
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Basic Theoretical Considerations 

Stress in a Tensile Member 

Consider Figure 1. When a bar of uniform sectional 

area A is subjected to an axial load P, then the stress 

acting on a cross-section given by LL normal to the 

axis is A

P

. Considering another section given by the 

plane MM inclined at  to LL, the area cut by the 

plane is cos

A

 Let the normal stress across MM be σn. 

 
Figure 1: Stress in a Tensile Member 

 

Resolving perpendicular to MM  

cosP
cos

A
.n

 

2

n cos
A

P

                                        
 (1) 

Further there will be a shearing stress of Ʈ  acting 

parallel to MM and resolving in this direction 

sinP
cos

A
.

 

cossin
A

P

   
 (2) 

This means that when a rod is subjected to pure 

tension, both tensile and shearing stresses are 

produced. In the material under compression, the 

corresponding stresses would be compressive and 

shearing.  

Since, 2

2sin

A

P
cossin

A

P

    

 (2a)   

The greatest value of shearing stress is when sin2ϴ  

= 1 or ϴ  = 45
o
 

Therefore, Maximum shearing stress produced 

A

P

2
max

                                
 (2b) 

Stresses Due to Pure Shearing 

 
               Figure 2: Stresses due to Pure Sharing 

 

Figure 2 shows a rectangular block LMNP of unit 

depth perpendicular to the paper. Let shearing stresses 

Ʈ xy act along the faces ML and PN. For equilibrium 

there may be neither a resultant force nor a resultant 

couple. Since Ʈ xy ML = Ʈ xy PN there is no resultant 

horizontal force, but the couple due to these is Ʈ xy X 

ML X MN. If shearing stresses Ʈ ,
xy are introduced on 

the surfaces PL and MN to balance the outstanding 

couple for equilibrium, then  

Ʈ ,
xy MN ML = Ʈ xy ML MN.       (3) 

Or,      Ʈ xy =Ʈ
,
xy 

Hence, for equilibrium, complementary shearing 

stresses Ʈ ,
xymust be introduced. 

Refer to Fig. 3. If an arbitrary plane AA cuts the 

block at an angle ϴ  to LM, the stresses acting across 

the plane can be determined by resolution. Let the 

direct and shearing stresses across AA beƂ nand Ʈ  

respectively.  

Resolving perpendicular to AA: 

σn x LN = Ʈ xy LM Sin ϴ  + Ʈ xy MN cos ϴ . 

σn = Ʈ xy  sin ϴ  + Ʈ xy  cos ϴ  

     = Ʈ xycos ϴ  sin ϴ  + Ʈ xy sin ϴ  cos ϴ  

     = 2 Ʈ xycos ϴ  sin ϴ  

     = Ʈ xy sin2ϴ                          

 (4) 

The maximum value will occur when 2ϴ  = -90
o
 or 

Ƃ n = - Ʈ xy(compressive). In other words a case of a 

pure shear is equivalent to a direct tensile stress and a 

direct compressive stress acting perpendicular to each 

other. 

Resolving parallel to AA: 

        Ʈ   LN = Ʈ xy MN sin ϴ  - Ʈ xy LM cos ϴ  

        Ʈ  = Ʈ xy  sin ϴ  - Ʈ xy  cos ϴ  

           = Ʈ xy sin ϴ  sin ϴ  - Ʈ xycos ϴ  cos ϴ   

= Ʈ xy (sin
2
 ϴ -cos

2
 ϴ ) 

= (-)Ʈ xy cos2 ϴ                                  

 (5) 

  Therefore, Ʈ  will be zero when ϴ  = 45
o
 

 

Two Mutually Perpendicular Direct Stresses 

Refer to Fig: 3.3. At any point in a material where 

stress is acting, it is possible to assume that the point 

consists of a very small triangular block, such that the 

stresses act across the faces of the block. Consider that 

direct stresses Ƃ x and Ƃ y act across the faces LM and 
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MN and that the block has unit depth perpendicular to 

LMN. Let the stresses Ʈ  and Ƃ n act on the same plane 

at an angle ϴ  to LM. 

 
Figure 3: Two Mutually Perpendicular Direct Stress 

 

Resolving normal to LN: 

σn LN = σx LM cosϴ  + σxMN sinϴ  

σn= σx cos ϴ  + σy  sin ϴ  

        =σx cos
2ϴ  +σy sin

2ϴ  =   2 cos
2ϴ  +  2sin

2ϴ   

          =  (1 - sin
2ϴ  + cos

2ϴ ) +  (1 - cos
2ϴ  + 

sin
2ϴ ) 

          =  + σx ( ) – σy ( ) 

         =  +    

   (6) 

When ϴ  = 0, then σn = +  =σx  

 (6a) 

And, when ϴ  = , then σn= -  =σy 

  (6b)    

Resolving parallel to LN: 

                    Ʈ   LN = σx LM sinϴ  - σy cosϴ  

                     Ʈ  = σx  sin ϴ  - σx  cos ϴ  

                       = σxcosϴ sinϴ  - σysinϴcosϴ  = (σx- 

σy) sinϴcosϴ  

                       =          

(7) 

The maximum value of Ʈ  occurs when 2ϴ  =  or ϴ  

=  and then, 

Ʈmax =                        

(7a) 

The resultant stress,  

σr = (σ
2
n + Ʈ 2

) 

tan  =  where  is the angle which the resultant 

stress makes with the normal to the plane and is called 

obliquity. 

 

Two- Dimensional Stress System (General) 

 
Figure 4: Two-Dimensional Stress System 

 

When the stresses at some point are considered to 

be acting on a small triangular block at a point , then a 

general stress system will consist of direct and 

shearing stresses acting across the faces of the block. 

Consider (Figure 4) some plane LN at angle ϴ  to the 

plane of the stress. 

Resolving normal to LN: 

σn  LN = Ʈ xy LM sin ϴ  + σx LM cos ϴ  + Ʈ xy MN 

cos ϴ  + σy MN sin ϴ . 

Therefore, σn = Ʈ xy  sin ϴ  + σx  cos ϴ  + Ʈ xy  

cos ϴ  + σy  sin ϴ  

     = Ʈ xycos ϴ  sin ϴ  + σx cos
2
 ϴ  + Ʈ xy sin ϴ  cos ϴ  

+ σy sin
2
 ϴ   

     = 2 Ʈ xy sin ϴ  cos ϴ  + σx cos
2
 ϴ  + σy sin

2
 ϴ  

     = Ʈ xy sin2ϴ  +  +  cos2ϴ                                           

   (8) 

Resolving along LN: 

     Ʈ   LN = Ʈ xy MN sin ϴ  + σx LM sin ϴ  - 

Ʈ xyLMcos ϴ  + σyMNcos ϴ  

Therefore, Ʈ  = Ʈ xy  sin ϴ  + σx  sin ϴ  -Ʈ xy  

cos ϴ  - σy  cos ϴ  

                     = Ʈ xy sin ϴ  sin ϴ  + σxcos ϴ  sin ϴ  - 

Ʈ xycos ϴ  cos ϴ  - σy sin ϴ  cos ϴ  

                     = Ʈ xy sin
2
 ϴ  + σx sin ϴ  cos ϴ  - Ʈ xy 

cos
2ϴ  - σy sin ϴ  cos ϴ  

                     = Ʈ xy (sin
2
 ϴ  - cos

2
 ϴ ) +  

sin2ϴ                                            

=  sin2ϴ  - Ʈ xy cos2ϴ              

      (9) 

(i) In order to find out the principal 

stresses, the maximum and minimum 

values of Ƃ n must be obtained. 

            Differentiating σn w.r.t.ϴ  in equation (6), 

we get 

 = 2 Ʈ xy cos2ϴ  -   sin2ϴ  

   Equating this to zero for maximum Ƃ x, we get 

   0=  sin2ϴ  - Ʈ xy cos2ϴ                                                                                            

Comparing with equation (7), we have Ʈ  = 0 

Hence for a principal plane there may be no shear 

stress acting. 

Also,  sin2ϴ  = Ʈ xy cos2ϴ                                                                                            
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Or, tan2ϴ  =             

(10a) 

     It follows that for any particular system, the 

principal stresses may be calculated by considering the 

planes which carry shearing stress (Fig 2.5). 

(ii) To get maximum value of Ʈ , 

differentiating Ʈ  w.r.t. ϴ  in eqn. (7) 

and equating to zero, we get 

 = cos2ϴ  + 2Ʈ xy sin2ϴ  = 0                                        

Or, ( ) cos2ϴ  = -2Ʈ xysin2ϴ  

Or,   tan2ϴ  = -  

Also,    cot (180-2ϴ 1) = -cot2ϴ 1 

And, cot (360-2ϴ 2) = -cot2ϴ 2 

Where ϴ 1 and ϴ 2 are the inclination of maximum 

shear stress with the plane of tensile stress σx 

Therefore, cot (180-2ϴ 1) =      

(10b) 

And, cot (360-2ϴ 2) =  

Resolving normal to LM: 

σn  LM + Ʈ xy x MN = σn  LM cos ϴ   

Dividing both side by LN, we get 

σxcos ϴ  + Ʈ xy sin ϴ  = σncos ϴ                                  

{  = cos ϴ ,  = sin ϴ} 

σx + Ʈ xytanϴ  =σn 

Resolving parallel to LM: 

σy MN + Ʈ xy LM = σn LN sinϴ  

Dividing both sides by LN, we get 

σy sin ϴ  + Ʈ xycos ϴ  = σn sin ϴ   

σy + Ʈ xy cot ϴ  = σn                          

(2.11a) 

Hence,           Ʈ xy tan ϴ  = σn – σx  (2.11b) 

And,                 Ʈ xytcot ϴ  = σn – σy 

 (2.11c) 

Ʈ 2
xy= (σn – σx)( σn – σy) 

Or,                                  Ʈ 2
xy = σ

2
n - ( ) σn + 

σxσy 

Solving, σn (=σ) say = 

 

That is,       σ=   

 (12) 

Therefore, Major Principal Stress,  

σ1 =  +                              

 (12a)                                                                       

Minor principal stress 

σ2= +                        

 (12b) 

Also,    Ʈmax =    or tan2ϴ  =  

(Also σ 1+ σ 2= ) 

 

More Circle Construction for Like stresses 

 
   Figure 5: Mohr’s Circle Construction for ‘Likes 

Stress’ 

 

Now, from, stress diagram 

NP= NL =  

PQ = NPsin2ϴ=  sin2ϴ= Ʈ  

Similarly, OQ = ON + NQ = +  cos2ϴ=Ƃ n 

Also, from stress circle, Ʈ  is maximum when 

2ϴ  = 90
o
, or 45

o
 

And, Ʈ max =  

 

    In case Ƃ x and Ƃ y are not like, the same 

procedure will be followed except that Ƃ x and Ƃ y will 

be measured to the opposite sides of the origin. The 

construction is given in Fig: 3.6. it may be noted that 

the direction of Ƃ n will depend upon its position with 

respect to the point O. if it is to the right of O, the 

direction of Ƃ n will be the same as that of Ƃ x. 

 
Figure 6: Mohr’s Circle Construction for ‘Unlike 

Stress’ 

 

Considering the difficulty for manual computation, 

Java programming language was used to program the 

mathematical formulations. With the program, The 

desired result can be determined by clicking the 

buttons. If the initial stresses and angle of inclination 

are provided, different results like normal, tangential, 

resultant and maximum stresses are determined 

including the obliquity of the resultant stress. The 

main window of the software is shown in figure 7 and 

figure 8.  

 

The program is divided into two parts, namely; 

stress computation and Mohr’s circle. 

The stress computation is sub-divided into two. 

Type I and type II. Type I involves stress computation 

where parameters like cross sectional area, axial 

compressive load and angle of inclination are needed 

to compute the values of various stresses and obliquity 

of resultant stress, while Type II solves similar 
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problems, but with different parameters like principal 

stresses, shear stress and angle of inclination, these 

can be achieve by clicking on the input value button. 

Type II gives the values of all the stresses at the same 

type while type I calculate for the stresses separately. 

Also these results can be obtained graphically by 

using Mohr’s circle. It consists of two axes namely; x-

axis with give the value of the normal stresses and the 

y-axis the give the value of the shear stress including 

the maximum shear stress.  

 
Figure 7: The Main Window of the Software for 

Stress Computation 

Resultant stress and obliquity of resultant stress can 

also be obtained by drawing a line and an arc through 

the curve in the circle. In the main window (stress 

computation and Mohr’s circle), some spaces are 

provided to input parameters such as principal stresses 

and angle of inclination, these stresses are sign 

sensitive.  

 

 
Figure 8: The Main Window of the Software for 

Mohr Circle 

 

After inputting the parameters in the space provided 

in the main window, one can find the value of normal 

stress, tangential/shear stress, resultant stress, 

maximum shear stress and obliquity of resultant stress 

by a click of button as shown in figure 9 and 10. 

.

 

Figure 9: Normal Stress, Tangential/Shear Stress, 

Resultant Stress, Maximum Shear Stress and 

Obliquity of Resultant  

 
Figure 10: Normal Stress, Tangential/Shear Stress, 

Resultant Stress, Maximum Shear Stress and 

Obliquity of Resultant Stress  

 

Finding the Mohr’s Circle of Stresses 

To see the Mohr’s circle of stresses for the two 

dimensional stresses, it is needed to click the 

 button. A new form will be opened just like 

figure 8. 

 

Then it is needed to press the  button of 

this new form. Then the Mohr’s circle of stresses will 

be found in the new form.  Result of the Mohr’s circle 

can be obtained by clicking the 

 button and the Mohr’s 

circle can be made more visible by pressing the 

 button. This Mohr’s 

circle can be magnified (+) by clicking the 

 and reduced by 

pressing the  button.   

 

 
Figure 11: Magnified Result of Mohr’s Circle 

 

Results and Discussion 

Sensitivity analysis of a model can help determine 

relative effects of model parameters on model results 

(Okonkwo, 2009). In other words, the purpose of 

sensitivity testing of a model is to investigate whether 

a slight perturbation of the parameter values will result 

in a significant perturbation of the model results, that 

is, the internal dynamics of the model (Okonkwo et. al, 
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2014). With the use of the software, sensitivity 

analysis was carried out to determine the impact of 

variations of the input model on the output. In this 

way the understanding of the relationships between 

input and output variables of the system can be 

determined. Also, it enables the identification of the 

input models that cause significant uncertainty in the 

output models.  

 

Figure 12 is an exponential curve, whose gradients 

vary from point to point, depending on the point of 

interest. The force which acts perpendicularly to the 

plane to which a force has been applied (normal stress) 

increases as the angle of inclination increases until 

maximum stress is reached at about 65
o
. Any further 

increase in stress will cause the material to experience 

deformations which will not be completely reversed 

upon removal of the loading and as a result the 

member will have a permanent deflection. 

 
      

 Figure 12: Relationship between Angle of inclination 

and stresses subjected to axial compressive load 

 

This stress starts declining as the angle of 

inclination increases until it becomes zero at 90
o
 due 

to continuous increase in the angle of inclination while 

the axial loading is kept constant. The component of 

force acting along the plane of area or stress state 

where the stress is parallel to the surface of the 

material increases as the angle of inclination of the 

material increase until it get to 45
o
 where maximum 

stress is obtained. As the angle increases, that is above 

45
o
, this stress starts reducing until tangential/shear 

stress is no longer excerted on the material. The 

material possesses a resultant stress which continues 

to increase as the angle of inclination of the material 

increases. At 10
o
 the material possesses equal 

tangential and resultant stress. At about 45
o
, the 

material has equal normal and tangential stress. At 

about 70
o
, the material has equal normal and resultant 

stress. The increase in internal forces (stresses) within 

the member is due to continuous increase in load 

applied to the mechanical member and angle of 

inclination. The stress acting on the material causes 

deformation of the material, while the declination of 

the stress is due to constant axial compressive loading 

of the material and further increase in the angle of its 

inclination 

 

 
 

Figure 13: Relationship between angle of inclination 

and stresses perpendicular planes subjected to 

principal stresses and shear stress  

 

Figure 13 shows the relationship between angle of 

inclination and stresses. The plot is an exponential 

graph whose gradients differ from point to point along 

the curve. Increase in the angle of inclination 

decreases both in normal and resultant stresses.  At 

90
o
 the material possesses the same normal and 

resultant stress. For the tangential stress, it continues 

to increase until the angle of inclination is 50
o
. At this 

point, slight increase in stress, makes the material to 

exceed its ultimate strength. Further increase in the 

angle, causes decrease in the stress and become zero at 

90
o
, due to steady shear stress. Maximum stress is 

exhibited in the material at 10
o
. Thus, increase in the 

angle of inclination of a material led to decrease in 

normal and resultant stress and increase in the 

tangential stress vice versa. The negative values of 

tangential stress are due to the increase in the angle of 

inclination beyond 90
o
, while the Principal stresses 

and Shear stresses are kept stationary. The material 

experiences equal normal and resultant stresses 

between (10
o
-20

o
) and (80

o
-100

o
). 

  

Conclusion 

Software for stress and Mohr’s circle computation 

and transformation has been developed.  The authors 

hope that the person who has engineering, or physics 

or applied physics background will be able to use this 

software very easily understanding each of the parts of 

the software with the theoretical background. The 

software can showcases to a student or researcher how 

stresses exerted on a material can undergo changes as 

the angle of inclination changes. The normal and 

resultant stress exerted on a material is equal when the 
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angle of its inclination is 90
o
. The normal and 

resultant stresses exerted on a material are always 

greater than the tangential stress. A material will not 

experience tangential stress when the angle of 

inclination is 90
o
, even when subjected to axial or 

compressive loading. A material can undergo failure 

when stresses exerted on it exceed its ultimate strength. 

Also, the Mohr Circle can be drawn within seconds.  
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