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Abstract- Laminar mixing of a two-dimensional
plane wall jet of particulate suspension in an
incompressible carrier fluid has been considered.
The basic equations are of the boundary layer type
and include the diffusion equation for sub micron
particles to investigate the flow field. The drag force
due to slip, finite volume fraction ,heat due to
conduction and viscous dissipation in the particle
phase energy equation have been introduced to
study their effect on skin friction & heat transfer.
The governing equations are solved by taking
perturbations on Schlirchting’s model. Again, the
effects of Prandtle number ,Eckrt number, Nusselt
number, size of the particles ,Material density of the
particles and diffusion parameters on the velocity
and temperature field for both phases have shown
through figures and tables. It is observed that
Nusselt number always increases with the increase
of the above parameters, and heat always transform
from fluid to plate in all the cases.

Keywords- Volume Fraction, Suspended Particulate
Matter(SPM), Skin Friction, Heat Transfer
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temperatures of fluid and particle
phase
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phase respectively
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Jmax —  Maximum number of Grid points

along Y - axis

L — Reference length

w — Dummy variable

7y — Grid growth ratio

Upw — Particle velocity on the plate

Ppw —  Particle density distribution on the plate
Tow — Temperature of particle phase on the plate

Superscripts
*—  Nondimensional quantities.

Fig. : Plane wall jet

INTRODUCTION

Gas-particle flows, dusty fluid flows and the flow
of suspensions have received considerable attention due
to the importance of these types of flow in various
engineering applications. The influence of dust particles
in both natural and industrial processes like sand dust
storms, tornados, volcano eruptions, fluidized beds,
coal classifiers, power conveyers, particle-laden jets,
petroleum industry, purification of crude oil,
manufacturing in the chemical, pharmaceutical,
biomedical, mineral and new materials sectors, and
increasingly grow in importance as new techniques and
applications, such as functional nanomaterials, are
developed. One important engineering application is the
predication and prevention of dust fires and explosions
in plants, storerooms and coal mines. It is well known
that many organic or metallic powders like cornstarch,
coal, aluminum and magnesium are suspended in air

form explosive mixtures due to huge specific surface
area of fine dispersed particles.

Schlichting’s model [11] of a laminar jet consider
a thin incompressible homogeneous jet issuing into a
medium at rest. This model can be analyzed easily
because the equations goverening the problem admit a
similar solutions. Pozzi & Binachani [9] have found
that the wvelocity distribution can be studied by a
perturbation on the Schlichting’s model [11] and
obtained the first order perturbation solution in the
closed form.

Bansaal and Tak [1] have studied Compressible
laminar plane wall jet and solved the governing
equations by a proper transformation of a similarity
variable and obtained the solution for temperature
distribution in a closed form, for viscous heating, wall
heating, initial heating, for arbitrary values of prandtl
number.

Bansal & Tak [2] have obtained approximate
solution of heat and momentum transfer in a laminar
plane wall jet. Mellivlle & Bray [3,4] have proposed a
model of two phase Turbulent jet. Panda at.el [7,8] have
studied two phase jet flow for incompressible and
compressible fluids.

No consulted effort found in the literature for
studying two phase wall jet problems. Here in the
present study, we have considered two phase jet flow of
an incompressible fluid be discharged through a narrow
slit in the half space along a plane wall and mixed with
the same surrounding fluid , Being initially at rest
having a temperature T,, .

MATHEMATICAL MODELING

Let an incompressible fluid with SPM be
discharged through a narrow slit in the half space
along a plane wall and mixed with the same
surrounding fluid being initially at rest having
temperature T,,. The wall is also maintained at the
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same constant temperature T,,.Taking the origin in
the slit and the co-ordinate axis x and y along and
normal to the plane wall respectively, the
boundary layer equations for the continuity,
momentum and energy after Introducing the non-
dimensional quantities like

=2 v =TARe, pp= o T
T =2 ®
The governing equations
= Z—;: 0 @)
%(ppup) + %(pp”p) =0 3)
u3—1;+17 g—;= %—aﬁ%pp(u—up) 4)
up%Jr Vp aalsg - € Zup 7 (u =) ()
ug—i+vg—§=%327€ 32I:rr1<pU’0p(T )
+Ec (g;) +i %aEcpp(u—up) (6)
up% vp?; :rz,?_%(Tp_T)
2 2
+5Pr. eEc [(%) + u, aa;p]
- %PrEc %(u—up)2 (7)
p% T %:E% )

Subjected to the boundary conditions
y=0-u=0u, =up, pp = pp,,

T=0 T,=T,,
y=w u=u,=0 p,=0 T=0,T,=0 (9)

and the integral conditions

— Iy @2 (J) udy)} dy

il ol =0

Z [ ur(f) wdy)dy

1 2a FL

= 3 0o {uf pp(Ty — T)dy}dy
—ﬁ%a ch {uf;opp(u - up)z dy}dy
+ch§°{ufy°° (Z—;)Zdy}dy (11)
SOLUTION FOR THE VELOCITY DISTRIBUTION

By taking a perturbation on the Schlichting [ 11 ] model
by writing

U= ug Uy, Uy = Upy + Uy Pp = Pp, +Pp, (12)

where uq,u, and p, are perturbation quantities

and substituting in equations (2) to (5), we get two sets
of equations as follows

15T SET AND ITS SOLUTION

dug , 0vg __

oy 0 (13)

7} 7}

5 (ppoupo) + @(ppovpo) =0 (14)
ou duy _ 9%ug 1 FL

T % Poy (uo — upo) (15)

0
+ =
uoa an ay? 1-o U

ou ou 0%u F
Po Po — po , FL _
Wox T W05, € oy +- (uo — up,) (16)
9Ppo 3ppy _ _9°Ppg
UWoTax U0y T € oy (17)

Subjected to the boundary condition
y=0-u =0 Upy = Upyo, Pro = Ppwo
Y=o Uy =1up, =0, pp, =0 (18)

Together with the integral condition
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2 [ B (J) wo)dy)} dy

+ﬁ% afgo{uo f;opl’o (uo = upo)dY}dy =0

(19)

Since we are considering the case of a dilute suspension
of particles, the velocity distribution in the fluid is not
significantly affected by the presence of the particles.
Therefore the drag force term [ i.e. 2™ term in the
R.H.S. of equation (15)] is dropped. But for the
submicron particles, Brownian motion can be
significant, the concentration distribution equation (14)
above will then be modified by Brownian diffusion
equation (17). With the above consideration the
equations (15) and (19) become

oug dug __ 9%u,
— 4 —_ =
uO Ax 170 dy ayz (20)

2 (3 ([ (wo)dy)} dy = 0

or, [7{ud(f (wo)dy)}dy = E(say) (1)

A similar solution of the equation (20) under the
present boundary and integral conditions is possible if
we take

v = (Ex) laf )y = ) Vayxs (22)
and u, = Z—l: = (g)% ),

o

vo=-2=2EyErm-rm} (@)

Where a prime denotes differentiation w.r.t. ‘n’, and the
equation of continuity is satisfied identically.

Substituting in the equation (20), we get
af"+ ff +2f° =0 (24)

and the boundary conditions are

n=0,f=0,f=0;, n=w:f =0 (25)
and integral condition
Jo ffedn=1 (26)

Multiplying by f(Integrating factor) throughout and
integrating the equation (24) gives,

Aff"—2f% +f2f =0 (27)

Where the constant of integration is zero by using
boundary condition (25).

The differential equation (27) can be linearized if we
substitute f' = ¢ , and considering the function f as

the independent variable, we get f" = ¢% and the

linearized form of the equation (27) is
dp 1 . _ f
E — E ¢ == as ¢ #0 (28)

The solution of (28) is given by

, 1
¢ == CJf—<f* (29)
Where C is arbitrary constant to be determined.

Assuming atn = oo, f = f,, then in view of boundary
condition (25) we get

C=cf (30)

The value of £, is yet to be determined and for this we
use the integral condition (26) which may be written as

[ rraf =1 (31)

From (29) , we get
5 (eyF-L)ar =1

1
or, f, =40t = 2515 (32)
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Now to solve the differential equation (31) we
substitute

-r
F=r (33)

So that it becomes
aF _ fo _ 2
o = (VF=F?)

Solving we get

_ 2 1+F+F
n =4 <l i) +2\/_arctg ) (34)

To develop a computational algorithm with non-
uniform-grid, finite difference expressions are
introduced for the various terms in equations (14) and
(16) as,

w _ 1.5 W]-”+1 - 2wl'+ 05 W]-”‘1 2

™ e + 0(Ax?) (35)

ow _ Wi - (-rf)wi - gt 2

E - Ty (ry+ 1) Ay * O(Ay ) (36)

2w _ , W - (L)Wt Wi 2

ay? 2 ry (ry+ 1) Ay? + o(ay?)
@37)

1 — -1

Vl/j‘n+ — ZVI/]‘H. _ Vl/j‘n (38)

and

Vier— ¥ = 15 (yj — ¥j-1) = 1BAY; (39)

Now the equations (16) and (17/14) reduced to

GWEL + bW+ W = ¢ (40)

Where W stands for either u, or py, .

2"° SET AND ITS SOLUTION

o — (41)

aox ay

9Pp, Oup, 9pp, Oup, 9Pp,
up1 x + Do gy +uP0 Ix + P1 9x + P1 gy

av. ap av.
p1 p1 bo —
+ Pp, dy + U, dy + Pp, ay 0 (42)

6u1 6u0 6u1 6u0
Up ——F Uy + v +v
ox ox ay ay
_ 0%y, 1 FL
T ay2 - 1-¢ Faplh(uo - upo)
L= (u —u ) (43)
1-¢ U ppo 1 P1
ou ou ou ou
P1 Po P1 Po
Up, Ix + D1 gx + Po 9y + Up, oy
=X Pl oy (44)
9y2 u \1 D1
9Pp, 9Ppo 9Pp, 9Ppo 3%pp,
+ + + =
uPo dx P1 9x Po 9y 171’1 oy € dy?
(45)
Subjected to the boundary condition
y=0u =0 Up, = Upyy, Ppo = Ppous
y=o u =u, =0 p, =0 (46)

and the integral condition

= Iy [ (J7 (w)dy)} dy
+ % fom{ZuOul (foy(u1)d3’)} dy
|[ J-ooo {uO fyoo Pp, (ul - upl)dy} dy

1
[+ fooo {uo fym Pp, (uo — upo)dy} dyl=0
[+ Iy {ul Iy ppq (0 - upo)dy} dYJ
(47)
is identically satisfied.

Using equations (35) to (39) in (41) to (45), we get

(L5ufft —2ul; +05uft) +

phtl = vn+1 -0 5Ay
Y y A (L5 ufy —2uly_, +05ufiy
(48)
+1 +1 +1 —
WSS+ bW+ gWE = d (49)
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Where W stands for either u, or u, or p,
SOLUTION FOR TEMPERATURE DISTRIBUTION

By taking a perturbation on the Schlichting [11 ] model
by writing

U= Ut U, V=Vt U U T Uy Uy,

V.

p = Vpot Vp Pp = Ppy T Ppys

+T

T=Ty+T,, T, =T, P1

Do

Where ul,vl,ull,l,171,,1,;)1,,1,T1 and T, —are
perturbation quantities,

and substituting in equations (6) and (7), we
get the following two sets of equations.

SET-1 AND ITS SOLUTION

aT, aT, 10%Ty, 2 1 FLa
ug o gyt 10T 2 1 FLa , (p T
0 ax 06y ~ Pray? 31-¢ U Pr 'Opo( 0 pO)
2
ug 1 FL 2
+Ec (g) +E7aEcpp0(uO—up0) (50)
0Ty, 0Tp, _ € 0%Ty,

FL
Po gx Upo dy ~ Pr ay? +7(TO_TPO)

3 FL 2
-3 FPrEc(uO - upo)

+§P E azupo + (6up0)2 51

JPrEce [up, -3 By (51)

Subjected to the boundary condition

y=0:To =0, Tp, =T,

Pwo
y=w Ty=0,T,, =0 (52)

and the integral condition

0 0
P fo {uoTo foy Ug dY}d}’ =
1 2a FL po

= 3P U0 {0 [ pp, (T, — To)dy} dy

1 FL
Mwralc chooo {uo fyoo Py, (o —

o) o [J 2
uy,)? dy}dy + Ec {uo 5, (aiy") dy}dy

(53)

Since we are considering the case of a dilute suspension
of particles, the temperature distribution in the fluid is
not significantly affected by the presence of the
particles. Therefore the 2" and 4™ term in the R.H.S. of
equation (50), and 1 and 2" term of R.H.S. in equation
(53) are dropped.

Hence equation (50) and (53) reduces to,

AT, T, _ 1 92T, (6u0)2
Uo dx Vo ay Pr dy? Ec ay (54)

and
0 0
I fo {uoTo foy Up dY}d}’
0 w0 [0 2
= £ fuo 1} (52) dy}ay 55)

The equation (54) is a linear differential equation in Ty.
So we can solve the equation by the principle of
superposition of solutions Ty, and Ty, such that Ty is
the solution of the equation

oT, oT, 1 92T,
00 oo — 00

0 9x 0 dy  Pr dy? (56)
and Ty, is the solution of the equation
0Tp1 0Toy _ 1 9%Tyy dug 2
to ox + o dy ~ Pr ay? +Ec (63/) (57)
So that Ty = Tyo + Tp1 (58)

Too and Ty, satisfies the boundary and the
integral conditions are given by

y = O:Toozo, T01=0
y = OO:TOO = 0, T01 =0 (59)

and
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Iy Tootto(Jfy uody)dy = const =1 (say) ~ (60)

Further,

0 0
afo To1uo(f0yuod3’) dy

0 w0 [0 2
= £e ) fuo fy (32) ayfay  (61)
is identically satisfied.

It implies the constancy of the product of volume and
heatflux, for a given prandtl number, through any cross-
section of the boundary layer perpendicular to the wall.

For arbitrary value of Pr, it is assumed that

E

Too = o (5)1/2 h(n) (62)

Substituting u, and v, from(23) and Ty, from (62) in
equation (57), the function h(n) satusfies the
differential equation

4n"+Pr(fh'+2f'h)=0 (63)
With the boundary conditions
n=0; h=0; n—>wo,h=0 (64)

and the Integral condition

Jo hff'dn=1 (65)
Introducing the transformation s = [F(n)]3/2 and
H(s) = 22 h(n) in equation (63).

The transformed equation is

s(l—s)%+{§—(§—Pr+l)s}Z—I:+§PrH=O

(66)

With the boundary condition

s=0H=0;s->1H=0 (67)
and the integral condition
Jy Hs'/3 ds =1 (68)

Equation (66) is a hyper-geometric equation, whose
solution is given by

H(s) =A ,F,(a,b,c;s) +

+Bs'/3 JFa—c+1,b—c+1,2—c;s)

(69)
Where
a+b=2—Pr.ab=—ZPr,and c=: (70)
and
JFi(a b,c;s) =Y%, arby s” _ aobo ° 4 arby 5T
cr rl c O ¢ 1

Since the prandtl number Pr of a fluid is always +ve
integer the series is absolutely converges.

Now by boundary condition (67), for s =0, A= 0
(71)

and H(S):le/3 Fila—c+1,b—c+1;,2—c;s)
(72)

In (72) ‘B’ is still an unknown constant which will be
determined by the integral condition (68) which is
given by

p=2{ 3F2(a—c+1.b—C+1'§'2_C'§;1)}_1

(73)

The solution of the equation (57) is solved by using
finite difference technique.

Using equations (35) to (39) in equation (57), we get

ajllvvj?i—iil_'_ b]'--V'/jn+1 + lelm/jri-;l — d]'-- (74)
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Where W stands for T,
2"P SET AND ITS SOLUTION

a7 oT a7 1 927

1 0 1 0 —

un—=+u, —+v,—+ v, — [
a 1 aox ay 1 ay Pr 0y?

2 a 1 FL

Yil e S APpo(Tp, = T1) + pp1(Ty, = To)}

Tug 0wy
+ 2Ec 3y 3y
2
_a FL pP1(u0 - upo)
e v + pro(uo - upo)(ul - uP1)
(75)
0Ty, Tpg 0Ty, 0Ty,

Po oy Up, ax Upo dy Up, dy

2

2
3 d Upy d Up, Oup, dup,
2PrEce.<up0 52 tUp, 55 T2

- 3% PrEc (uo — upo)(u1 - upl) (76)

Using equations (35) to (39) in equation (75) and (76),
we get

++pn+l ++pn+l +Hpyntl — g+t
a W23 +b]- W; + Wi = d]- (77)

Where W stands for T; , Ty,

DISCUSSION
We choose the following parameters involved

p =0913 kg/m?; p,=8010kg/m3,  a=01;
D =50um,100um ; U = 0.45m/sec; L = 0.044 m;
Ec=01; Pr=0.71,10,70; u = 2226 x 107
kg/msec; v = 2.43 x 107> m?/sec

Fig.-1 shows the velocity distribution wu, ,is plotted
against y. The velocity distribution near the plate is of
Blasius type and away from it resembles with the
distribution of plane free jet.

Fig.-2 & Fig.-3 depicts velocity profile u, without and
with viscous heating respectively for the presence of
particles of above micron size. The conclusion is that
the nature of the curve is of Balsius type near the plate
and away it resembles like the distribution of plane free
jet. The magnitude in both the cases is same .But
inclusion of viscous heating decrease the magnitude of
Uq.

Fig.-4 shows the distribution of the perturbed velocity
u, for submicron size particles. Here also the
magnitude of u, is less in case of viscous heating. The
Pattern of u, near the plate is of Balsius type and away
is like that of free jet.

Fig.5 & Fig.6 — Shows the velocity pattern of particle
velocity u,, incase of without and with viscous heat
respectively in the presence  of particles of above
micron size. Magnitude of w, s greater  when
coarser particles are present. The velocity pattern is
of Blasius type near the plate and away is that of free
jet.

Fig.- 7 Demonstrates the pattern of velocity wu, for
submicron Particles with and without viscous heating.
The magnitude of 1w, is less incase  of Viscous
heating is considered. Here also the pattern is of Blasius
type near the plate and of free jet type at away from
plate.

Fig.-8. Shows the pattern of fluid phase temperature T,
is of Balasius type near the plate and like free jet at
away from plate.

Fig.-9 depicts the particle phase temperature T, for
various material densities of the particles. The
temperature is more in case of particles with less
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material density and here also the temperature

distribution is of Blasius type.
Fig.-10 Shows the temperature distribution T; for with
and without viscous heating and the pattern is of
Balasius type near the plate and of free type away from oo
the plate.
To show the heat transfer in the wall jet, the nusselts oo , , : .y

number is calculated for different values of the
parameter. The Value of Nu is given in Table-1 to
Table-5. Here Nu =Nu, + Nu; , where Nu, is the

nusselt number when the carrier fluid is not affected by Fig. 1: Velocity distribution (u,) withy
the presence of particle and Nu; is calculated based on

perturbation temperature T; . In table-1 values of Nu, 00000002 -

for initial heating and viscous heating for different 00000000 +

-0.0000002 4

values of Pr. Similarly Fig-2 shows the dependence of
Nu,; on Pr. From Table-1 and Table-2 , it can be
observed that Nu, and Nu; is increasing in both for

-0.0000004

-0.0000006 -

-0.0000008

initial heating and for viscous heating. Further it is 00000107

observed that Nu, and Nu, increases when x increases -

i.e in the down stream direction of the plate. In the P— TS
Table -3, the dependence of Nu;, on Pr for initial 00000018 +— T T T T 1Y

heating as well as viscous heating is shown. In this case
also Nu, increases with the increase of size of the
partiCIe' Table-4 shows the dependence of Nu, on Ps Fig. 2: Variation of u, with y for different size of the particles(Initial
i.e material density of the particle. Here also Nu, Heating)

increases with the p,. .Table -5 shows the dependence
of Nuy; with the diffusion parameter e for initial
heating and viscous heating. It is observed that Nu,
increases with the increase of e . From numerical

0.0000002 -

0.0000000

calculation, it has been observed that dependence of
Nug, on the size of the particles, material density of 00000041
particles and diffusion parameter is negligible. u,

-0.0000010 4
-0.0000012 4

-0.0000014
—— D=50E-06
- - - D= 100E-06

-0.0000018 . . . . . Y
0 1 2 3 4 5

-0.0000016

Fig. 3: Variation of u, with y for different size of the particles (Viscous

Heating)
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-0154
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—— D=0.5E-06(Initial Heating)
- - - D=0.5E-06 (Viscous Heating)

T T
0 1 2

: . Y
5

3 4

-1.04

—— D=0.5E-06 (Initial Heating)
- - - D=0.5E-06 (Viscous Heating)

T
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Fig. 4: Variation of u, with y for sub-micron particles
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Fig. 7: Variation of u,,, with y for sub-micron particles
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Fig. 5: Variation of u, with y for different size of the particles (Initial
Heating)
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Fig. 6: Variation of u, with y for different size of the particles (Viscous
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Fig. 9: Variation of T,,, with y for different material density of particles
(For Viscous Heating)
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o°
o
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o
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o
S

Fig.10: Variation of T, with y for submicron particles

e

Viscous Heating

Table 1: Variation of Nuy with x for different Prandtl Number (Pr)

Initial Heating Viscous Heating
X Pr=0.71 Pr=1.0 Pr=7.0 Pr=0.71 Pr=1.0 Pr=7.0
1.20 | -1.44E+02 -2.02E+02 -6.02E+03 | -1.44E+02 -2.02E+02 -6.02E+03
140 | -1.34E+02 -1.87E+02 -557E+03 | -1.34E+02 -1.87E+02 -557E+03
160 | -1.25E+02 -1.75E+02 -521E+03 | -1.25E+02 -1.75E+02 -5.21E+03
180 | -1.18E+02 -1.65E+02 -491E+03 | -1.18E+02 -1.65E+02 -4.91E+03
200 | -1.12E+02 -156E+02 -4.66E+03 | -1.12E+02 -156E+02 -4.66E+03
240 | -1.02E+02 -143E+02 -4.25E+03 | -1.02E+02 -143E+02 -4.25E+03
280 | -944E+01 -1.32E+02 -3.94E+03 | -9.44E+01 -1.32E+02 -3.94E+03
3.20 | -8.83E+01 -1.24E+02 -3.68E+03 | -8.83E+01 -1.24E+02 -3.68E+03
360 | -833E+01 -1.16E+02 -347E+03 | -8.33E+01 -1.16E+02 -3.47E+03
400 | -790E+01 -1.11E+02 -3.30E+03 | -7.90E+01 -1.11E+02 -3.30E+03
440 | -753E+01 -1.05E+02 -3.14E+03 | -7.53E+01 -1.05E+02 -3.14E+03
480 | -7.21E+01 -1.01E+02 -3.01E+03 | -7.21E+01 -1.01E+02 -3.01E+03
500 | -707E+01 -9.88E+01 -2.95E+03 | -7.07E+01 -9.88E+01 -2.95E+03
Table 2: Variation of Nu; with x for different Prandtl Number(Pr)
Initial Heating Viscous Heating
X Pr=071 Pr=10 Pr=70 |Pr=071 Pr=10 Pr=70
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120
140
1.60
180
2.00
240
280
3.20
3.60
4,00
440
4.80
5.00

1.18E+12
3.04E+13
2.02E+14
449E+14
157E+14
8.98E+11
1.03E+10
8.41E+09
4.79E+09
2.86E+09
1.78E+09
1.13E+09
9.12E+08

1.18E+12
247E+13
146E+14
3.94E+14
137E+14
7.78E+11
8.48E+09
7.09E+09
4.04E+09
241E+09
1.50E+09
9.55E+08
7.69E+08

1.18E+12
743E+12
3.83E+13
161E+14
5.68E+13
246E+11
3.51E+09
2.69E+09
1.53E+09
9.17E+08
5.69E+08
3.63E+08
2.92E+08

1.89E+05
4.22E+05
121E+06
9.49E+05
6.95E+05
1.13E+05
7.94E+03
7.20E+04
8.92E+04
1.03E+05
1.18E+05
1.32E+05
1.39E+05

1.79E+05
4.22E+05
1.23E+06
9.59E+05
6.79E+05
1.49E+05
6.93E+03
9.11E+04
1.14E+05
1.32E+05
1.50E+05
1.69E+05
1.78E+05

251E+04
5.62E+05
6.75E+05
2.23E+06
3.90E+06
1.63E+06
3.36E+05
453E+05
5.86E+05
6.75E+05
7.68E+05
8.61E+05
9.07E+05

Table 3: Variation of Nu, with x for different size of the particles

Initial Heating Viscous Heating

x | D=0.5E-06 D=50E-06 D=100E-06 | D=0.5E-06 D=50E-06 D= 100E-06
120 | -118E+12 104E+05 104E+04 | -1.89E+05 -440E+05 -4.42E+04
140 | 3.04E+13 -7.14E+04 -511E+08 | -4.22E+05 -1.05E+04 -8.50E+06
160 | -202E+14 -393E+04 -243E+08 | -121E+06 -225E+03 4.46E+06
180 | 449E+14 -161E+03 -1.75E+05 | -949E+05 -141E+03 544E+03
200 | -157E+14 -479E+02 -3.01E+03 | -6.95E+05 157E+03 -7.67E+02
240 | 898E+11 -218E+06 -6.90E+03 | 1.13E+05 -5.64E+04 -3.65E+02
280 | -1.03E+10 1.78E+04 -1.72E+02 | 7.94E+03 -411E+03 -554E+02
320 | -841E+09 -1.08E+03 -5.65E+02 | 7.20E+04 -1.08E+03 -546E+02
360 | -479E+09 -1.09E+03 -531E+02 | 892E+04 -1.12E+03 -3.47E+02
400 | -286E+09 -1.12E+03 -526E+02 | 1.03E+05 -1.11E+03 -5.37E+02
440 | -1.78E+09 -111E+03 -523E+02 | 1.18E+05 -1.11E+03 -5.34E+02
480 | -1.13E+09 -1.10E+03 -520E+02 | 1.32E+05 -1.11E+03 -5.31E+02
500 | -9.12E+08 -1.10E+03 -518E+02 | 1.39E+05 -1.11E+03 -529E+02
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Table 4: Variation of Nuy with x for different material density

Initial Heating Viscous Heating
ps=800 ps=8010 ps=800 ps=8010
120 | -1.18E+12 240E+13 | -1.89E+05 -2.59E+04
140 | 3.04E+13 -4.68E+13 | -4.22E+05 -3.61E+04
160 | -2.02E+14 -551E+14 | -1.21E+06 3.17E+04
180 | 449E+14 -530E+14 | -9.49E+05 -1.03E+04
200 | -157E+14 -588E+13 | -6.95E+05 2.33E+03
240 | 898E+11 -519E+10 | 1.13E+05 9.14E+03
280 | -1.03E+10 -106E+11 | 7.94E+03 6.92E+03
320 | -8.41E+09 -545E+10 | 7.20E+04 8.73E+03
360 | -4.79E+09 -2.81E+10 | 8.92E+04 1.03E+04
400 | -286E+09 -158E+10 | 1.03E+05 1.18E+04
440 | -1.78E+09 -954E+09 | 1.18E+05 1.34E+04
480 | -1.13E+09 -6.01E+09 | 1.32E+05 151E+04
500 | -9.12E+08 -4.84E+09 | 1.39E+05 1.59E+04

Table 5: Variation of Nu, with x for different diffusion parameter(e)

Initial Heating Viscous Heating
X € =0.05 €=0.1 € =0.05 €=0.1
120 | -1.18E+12 1.19E+08 | -1.89E+05 -1.18E+06
140 | 3.04E+13 264E+11 | -4.22E+05 -8.04E+04
160 | -2.02E+14 -3.86E+12 | -1.21E+06 -2.86E+05
180 | 449E+14 -2.18E+11 | -9.49E+05 -3.59E+05
200 | -157E+14 -758E+12 | -6.95E+05 -2.00E+05
240 | 898E+11 -250E+09 | 1.13E+05 3.98E+05
280 | -1.03E+10 458E+06 | 7.94E+03 1.16E+05
320 | -841E+09 155E+06 | 7.20E+04 2.84E+05
360 | -4.79E+09 6.72E+05 | 8.92E+04 3.48E+05
400 | -286E+09 3.06E+05 | 1.03E+05 4.04E+05
440 | -1.78E+09 1.32E+05 | 1.18E+05 4.61E+05
480 | -1.13E+09 4.42E+04 | 1.32E+05 5.19E+05
500 | -9.12E+08 1.71E+04 | 1.39E+05 5.47E+05
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