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Abstract– Pressure drops through thick orifices have been 
numerically investigated with single phase flow of water and two-
phase flow of air–water mixtures in horizontal pipes. Two-phase 
computational fluid dynamics (CFD) calculations, using 
Eulerian–Eulerian model have been employed to calculate the 
pressure drop through orifices. The operating conditions cover 
the gas and liquid superficial velocity ranges Vsg = 0.3–4 m/s and 
Vsl = 0.6–2 m/s, respectively. The local pressure drops have been 
obtained by means of extrapolation from the computed upstream 
and downstream linearized pressure profiles to the orifice 
section. Simulations for the single-phase flow of water have been 
carried out for local liquid Reynolds number ranging from 3×104 
to 2×105 to obtain the discharge coefficient and two-phase local 
multiplier. The effect of orifice geometry on two-phase pressure 
losses has been considered by selecting two pipes of 60 mm and 
40 mm inner diameter and four different orifice plates (for each 
pipe) with two area ratios (σ = 0.73 and σ = 0.54) and two 
different orifice thicknesses (s/d = 0.025, 0.59). The results 
obtained from numerical simulations are validated against 
experimental data from the literature and are found to be in 
good agreement 
 
Keywords– orifice, pressure drop, two phase flow, area ratio, 
discharge coefficient, two-phase multiplier. 
 

I. INTRODUCTION 
Knowledge of pressure drop for single phase flows and 

two-phase flows through valves, orifices and other pipe 
fittings are important for the control and operation of 
industrial devices such as chemical reactors, power generation 
units, refrigeration apparatuses, oil wells, and pipelines. The 
orifice is one of the most commonly used elements in flow 
rate measurement and regulation. Because of its simple 
structure and reliable performance, the orifice is increasingly 
adopted in gas-liquid two-phase flow measurements. Single 
orifices or arrays of them constituting perforated plates, are 
often used to enhance flow uniformity and mass distribution 
downstream of manifolds and distributors. They are also used 
to enhance the heat-mass transfer in thermal and chemical 
processes (e.g. distillation trays). Single-phase flows across 
orifices have been extensively studied, as has been shown by 
Idelchik et al. [1] in their handbook. The available correlations 
do not always take into account Reynolds number effect and a 

complete set of geometrical parameters. Some investigations 
have been made on the theory and experiment of resistance 
characteristics of orifices [1-4] and some useful correlations 
have been proposed. However, some of them cover only a 
limited range of operating conditions, and the errors of some 
are far beyond the limit of tolerance. So they are not widely 
used in engineering design. Major uncertainties exist with 
reference to two-phase flows through orifices. Few 
experimental studies reported in the literature often refer to a 
limited set of operating conditions. With particular reference 
to orifice plates, some of the correlations and models [2-4] are 
discussed by Roul and Dash [5]. Other references are the 
experimental study by Lin [6] on two-phase flow 
measurement with sharp edge orifices; the experimental 
investigation by Saadawi et al. [7], which refers to two-phase 
flows across orifices in large diameter pipes and the work by 
Kojasoy et al. [8] on multiple thick and thin orifice plates. 
Fossa and Guglielmini [9] experimentally investigated two-
phase flow pressure drop through thin and thick orifices and 
observed that the void fraction generally increases across the 
singularity and attains a maximum value just downstream of 
restriction.  

The information regarding the effects of orifice thickness 
on two-phase pressure losses is not available in the literature. 
In the present study the effect of orifice geometry on two-
phase pressure losses has been considered by selecting two 
pipes of 60 mm and 40 mm inner diameter and four different 
orifice plates with two area ratios (σ = 0.73 and σ = 0.54) and 
two different thicknesses (one thin and one thick orifice) (s/d 
= 0.025, 0.59). When the value of s/d is below 0.5 it is called a 
thin orifice otherwise it is a thick orifice [3]. The results 
presented in this study provide useful information on the 
reliability of available models and correlations when applied 
to intermittent flows through orifices having high values of the 
contraction area ratio. 

II. THEORETICAL BACKGROUND 

A. Single-phase Flow 
For the flow through a thin orifice, the flow contracts with 

negligible losses of mechanical energy, to a vena contracta of 
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area Ac that forms outside the restriction. Downstream of the 
vena contracta the flow expands in an irreversible process to 
the pipe wall of flow area A. 

 
 
 
 
 
 
 
 
 
 
 
 
 
If the orifice is thick (Fig. 1), downstream of the vena 

contracta, the flow reattaches to the wall within the length of 
the geometrical contraction and can even develop a boundary 
layer flow until it finally expands back into the pipe wall. 
According to Chisholm [3], the thick orifice behavior takes 
place when the dimensionless orifice thickness to diameter 
ratio, s/d is greater than 0.5. Assuming that each expansion 
occurs irreversibly and the fluid is incompressible, the single-
phase pressure drop ΔP in a thin orifice can be expressed as a 
function of the flow area ratio              and the contraction 
coefficient                   as: 

                                                              (1) 

 

where ρ is the fluid density and V its mean velocity.  

If the orifice is thick, the loss of mechanical energy is due 
to the double expansion as described above. For these 
conditions the single-phase overall pressure drop can be 
expressed as: 

     
(2) 

 
The local pressure drop can also be expressed as a function of 
orifice discharge coefficient Cd (Lin [6], Grace and Lapple 
[10]): 

   
(3) 

 
From Eqs. (1) and (3),     for thin orifices can be written as: 
       

(4) 
 
Similarly from Eqs. (2) and (3),     for thick orifices can be 

written as: 

      (5) 
 
 

The well known Chisholm expression for contraction 
coefficient in terms of the area flow ratio only (Chisholm [3]) 
is given as: 

      
      (6) 

 
In the present study the pressure drops across different 

orifices for single phase flow of water are obtained 
numerically, from which the discharge coefficient is 
calculated using Eq. (3). The contraction coefficient is 
calculated using Eqs. (4) and (5) for thin and thick orifices 
respectively. This contraction coefficient is compared with the 
Chisholm correlation as given by Eq. (6). 

B. Two-phase Flow 

According to Chisholm [3] and Morris [4], the slip ratio S 
is defined as the ratio of gas phase velocity to the liquid phase 
velocity at any point in the flow path (Collier and Thome [11]) 
and it is a function of the quality x and the ratio of fluid 
densities.  When the quality of mixtures, x is very low (such as 
those considered in the present investigation, x<0.005), the 
slip ratio, S can be expressed as: 

      
      (7) 

 
Where slip ratio, S is defined as the ratio of gas phase 

velocity to the liquid phase velocity at any point in the flow 
path (Collier and Thome [11]). The quality, x is defined as the 
ratio of mass flux of gas to the total mass flux of mixture at 
any cross-section [11]. The mass flux of gas is the gas mass 
flow rate divided by total cross-sectional area of pipe whereas 
the total mass flux is the total mass flow rate of mixture 
divided by total cross-sectional area of the pipe. 
Mathematically the quality x can be expressed as: 

    
(8) 

 
For fully developed flow, near atmospheric pressure, the 

slip ratio can be expressed in terms of the gas volume fraction: 
      

    
(9) 

 
Kojasoy et al. [8] adopt the Chisholm expression for slip 

ratio S but they suggest a correction to account for the effect 
of flow restriction on slip ratio:   
      
      (10) 

 
The exponent n is zero at the vena contracta and 

downstream of it (i.e. the slip ratio is expected to be one) 
while n is equal to 0.4 and 0.15 in the upstream region for thin 
and thick orifices respectively.  

Simpson et al. [2] adopted a different correlation for slip 
evaluation that does not account for the quality of the mixture: 
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Fig. 1 Single-phase flow across thick orifices 
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      (11) 

The prediction of the two-phase multiplier,  can be 
calculated using different models as described below. The 
two-phase multiplier is defined as the ratio of the two-phase 
pressure drop through the orifice to the single-phase pressure 
drop obtained at liquid mass flux equal to the overall two-
phase mass flux. 

If the mixture can be considered homogeneous (S = 1), the 
following expression can be obtained: 

      (12) 
 

Chisholm [3] developed the following expression: 
      

      (13) 
 
where the parameter Β can be assumed to be 0.5 for thin 
orifices and 1.5 for thick ones.  

Morris relationship [4] refers to thin orifices and gate 
valves and has the following expression: 

      (14) 

 
where, the slip ratio S is given by Eq. (7).  

Simpson et al. [2] proposed the following relationship 
based on slip predictions given by Eq. (11): 

      (15) 

Simpson model is based on data collected with large 
diameter pipes (up to 127 mm) at mixture qualities generally 
higher than those obtained in this work (x < 0.005).  

Finally the correlation of Saadawi et al. [7], based on 
experiments carried out at near atmospheric pressure with a 
very large diameter pipe (203 mm), is given by: 

      (16) 

In the present study the pressure drops across different 
orifices for two-phase flow of air-water mixtures are obtained 
numerically. The single-phase pressure drops at liquid mass 
flux equal to the overall two-phase mass flux are obtained by 
interpolating the single-phase pressure drop results. The two-
phase multiplier is obtained by taking the ratio of the two-
phase pressure drop to that of the single phase pressure drop. 
The two-phase multiplier thus obtained is compared with the 
theoretical predictions from the above equations (Eqs. (12)–
(16)).  

III.  NUMERICAL MODELING 
The governing equations of mass, momentum and turbulent 

quantities have been integrated over a control volume and the 
subsequent equations have been discretized over the control 
volume using the finite volume technique (Patankar [12]) to 
yield a set of algebraic equations. Boundary conditions were 
implemented to the finite volume equations which could be 
solved by the algebraic multigrid scheme of Fluent 6.3. The 
flow field was assumed to be axisymmetric and solved in two 

dimensions. The algebraic equations were solved using double 
precision solver with an implicit scheme for all variables with 
a variable time step starting at 0.00001s and finally going up 
to 0.001s for quick convergence. The discretization scheme 
for momentum, volume fraction, turbulent kinetic energy and 
turbulent dissipation rate were taken to be first order up 
winding initially for better convergence. Slowly as time 
progressed the discretization forms were switched over to 
second order up winding and then slowly towards the QUICK 
scheme for better accuracy. It is to be noted here that in the 
Eulerian scheme of solution, two continuity equations and two 
momentum equations were solved for two phases. The Phase-
Coupled SIMPLE algorithm(Vasquez and Ivanov [13]), which 
is an extension of the SIMPLE algorithm (Patankar [12]) for 
multiphase flows was used for the pressure-velocity coupling. 
The velocities were solved coupled by the phases, but in a 
segregated fashion. Then a pressure correction equation was 
built based on total volume continuity rather than mass 
continuity. Pressure and velocities were then corrected so as to 
satisfy the continuity constraint. The Reynolds stress model 
(RSM) has been used as a closure model for turbulent flow. 
Abandoning the isotropic eddy-viscosity hypothesis, the RSM 
closes the Reynolds-averaged Navier-Stokes equations by 
solving transport equations for the Reynolds stresses, together 
with an equation for the dissipation rate. This means that five 
additional transport equations are required in 2D flows. The 
two-layer model for enhanced wall treatment was used to 
account for the viscosity-affected near-wall region in 
numerical computation of turbulent flow. Fine grids were used 
near the wall as well as near the orifice, where the mean flow 
changes rapidly and there are shear layers with a large mean 
rate of strain. The scaled residuals for continuity, velocity of 
water and air in axial and radial directions,    and    for water, 
uu-water, vv-water, ww-water, uv-water and volume fraction 
for air were monitored. The convergence criteria for all the 
variables were taken to be 0.001. If the residuals for all 
problem variables fall below the convergence criteria but are 
still in decline, the solution is still changing, to a greater or 
lesser degree. A solution is said to be truly converged if the 
scaled residuals are no longer changing with successive 
iterations. A better indicator occurs when the residuals flatten 
in a traditional residual plot (of residual value vs. iteration). 
Convergence was judged not only by examining scaled 
residual levels, but also by monitoring the velocities and 
pressures at three different locations very close to the orifice 
section (at 5D upstream, at the orifice and at 5D downstream). 
The solution was considered to have converged when there 
was no further observable change in the velocity and pressure 
at each location. Finally it was observed that the scaled 
residual for continuity equation was below 10-3 and that for all 
other variables were well below 10-6.  
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Velocity inlet boundary condition is applied at the inlet (as 

shown in Fig. 2). A no-slip and no-penetrating boundary 
condition is imposed on the wall of the pipe and the two-layer 
model for enhanced wall treatment was used to account for the 
viscosity-affected near-wall region. At the outlet, the 
boundary condition is assigned as outflow, which implies 
diffusion flux for the entire variables in exit direction are zero. 
Symmetry boundary condition is considered at the axis, which 
implies normal gradients of all flow variables are zero and 
radial velocity and the shear stress are zero at the axis. 

Fig. 2 shows the domain used for the area ratio of 0.54, 
orifice thickness to diameter ratio of 0.59 in 40 mm diameter 
pipe (half of the section is modeled, with a symmetry 
boundary at the centerline). Numerical mesh used for different 
values of s/d, area ratio and pipe diameter, were determined 
from several numerical experiments which showed that further 
refinement in grids in either direction did not change the result 
(maximum change in pressure drop or any scalar variable) by 
more than 1%.  

IV.  RESULTS AND DISCUSSIONS 
Two different horizontal pipes are considered, having inner 

diameters D equal to 60 mm and 40 mm. The test section is 
about 12 m long. The orifice is located 6 m downstream the 
inlet section. The effect of orifice geometry has been 
considered by selecting 8 different orifices. The 8 shapes here 
result from two pipe diameters (D = 60 mm and 40 mm), two 
area ratios (σ = 0.73 and 0.54) and two orifice thicknesses, 
(s/d = 0.025 and 0.59). According to Chisholm [3] criteria the 
orifice having s/d = 0.59 can be classified as a “thick” orifice. 
The fluids used are air and water at room temperature and near 
atmospheric pressure. Gas superficial velocities are taken in 
the range Vsg = 0.3–4 m/s, while liquid superficial velocities 
are taken in the range Vsl = 0.6–2 m/s.  

The local pressure drops have been obtained by 
extrapolating the computed pressure profiles upstream and 
downstream of the orifice (in the region of fully developed 
pipe flow) to the orifice section as demonstrated in fig 3. For 
fully developed flow in upstream and downstream of the 
orifice section the variation of static pressure with length of 
the pipe (L/d) is linear.  

 

 

 

 

 

 

 

 

 

 
These linearised pressure profiles are extrapolated to the 

orifice section as shown in figure 3, from which the pressure 
drop at the orifice section is calculated. Local pressure drop 
means the pressure drop at the orifice section. The reference 
pressure is located at a distance of 5d from the orifice section 
in the upstream direction, where d is the diameter of the 
orifice. The pressure at this location is taken as the 
atmospheric pressure or zero gauge pressure. If the pressure at 
any section is more than the reference pressure then it is 
positive or else it is negative as can be seen from figure 3. The 
position of the orifice is taken as the origin and the upstream 
distances are taken as negative where as the downstream 
distances are taken as positive.  

The procedure is repeated for single-phase flow of water 
and two-phase flow of air-water mixtures in order to compute 
the two-phase multiplier     .  

A.  Single-phase Flow 
The velocity vectors and stream lines for single phase water 

flow through orifices having s/d = 0.025 and 0.59 are shown 
in Figs. 4 and 5 respectively. It is evident from the figures that 
for the flow through thin orifices (s/d = 0.025), the flow 
contracts to a vena contracta that forms outside the restriction. 
At the vena contracta the flow becomes parallel and 
downstream of the vena contracta the flow expands to the pipe 
wall of flow area A. A region of separated flow occurs from 
the sharp corner of the orifice and extends past the vena 
contracta. For the flow through thick orifice (s/d = 0.59), vena 
contracta always forms inside the restriction. Downstream of 
the vena contracta, the flow reattaches to the wall within the 
length of the geometrical contraction and it finally expands 
back into the pipe wall. Simulated velocity vectors clearly 
show that eddy zones are formed in the separated flow region. 
The pressure profiles for the single phase flow of water 
through orifice s/d = 0.59 in 40 mm diameter pipe for area 
ratio, σ = 0.54 are shown in Fig. 6 as a function of Reynolds 
number, Red. The liquid Reynolds number is defined as: 

     Red = Gd/µl      

where G is the total mass flux corresponding to orifice 
section, d is the orifice diameter, and µl is the viscosity of 
liquid. It is observed that the static pressure attains the (locally) 
smallest value at a distance of about                 after the orifice 
section and depends only slightly on the mass flow rates. For 
the same s/d value the axial pressure drop at the orifice section 
increases with increase in Red number.  

Figure 7 shows the pressure profile for single phase flow of 
water through orifices of different thickness for Red = 200000. 
It clearly shows that the pressure drop, ΔP across the orifice 
increases with a decrease in orifice thickness and pressure 
drop decreases with an increase in area ratio. For the same 
pipe diameter, when the area flow ratio decreases, orifice 
diameter also decreases. When expansion takes place from 
smaller diameter to larger diameter, the height of the 

/ 0.5z d 

Fig. 2 Computational domain for  = 0.54, s/d = 0.59 and D = 40mm 
 

Fig. 3 Pressure drop at the orifice section by extrapolating the upstream 
and downstream computed pressure profiles to the orifice section 
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Fig. 7 Pressure profiles for single phase water 
flow through different orifices  
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recirculation zone increases. This results in the formation of 
more vortices and hence more pressure drop will occur.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 

Fig. 4 (a) Velocity vectors and (b) Stream lines for single phase 
water flow through orifice σ = 0.54, s/d=0.025, and D=40 mm 

(b) (b) 

(a) 

Fig. 5(a) Velocity vectors and (b) Stream lines for single phase 
water flow through orifice σ = 0.54, s/d=0.59, and D=40 mm 

Fig. 6 Pressure profiles for single phase water flow 
through D=40 mm, σ = 0.54, s/d=0.59 orifice 

Fig. 8 Contraction coefficient as a function of local 
Reynolds number for σ = 0.54. 
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From the computed pressure profiles upstream and 

downstream of the orifice, the local pressure drop has been 
obtained by extrapolating these profiles to the orifice section. 
From the local pressure drop values the orifice discharge 
coefficient Cd is calculated, from which the contraction 
coefficient      has been obtained by means of Eqs. (3)–(5). 
Figs. 8 and 9, which refer to either the 60 mm or 40 mm 
diameter pipe show the      values as a function of restriction 
Reynolds number, Red for different values of the flow area 
ratio. It can be observed from figures 8 and 9 that the 
contraction coefficient turns out to be independent of the 
Reynolds number for values above 5×104. For lower values of 
Reynolds number, the contraction coefficient generally 
increases with it. Finally it can be noticed that the contraction 
coefficient data are in good agreement with Chisholm formula 
predictions (Eq. (6)). The contraction coefficient is high 
(around 0.76) for area flow ratio of 0.73, whereas that for area 
flow ratio of 0.54, is around 0.7. This is because for higher 
area flow ratio, the orifice diameter is more and so the height 
of the recirculation zone is smaller and hence the pressure 
drop is less. From equation (3) it can be observed that when 

P  is less, Cd is more and from equation (4) it can be 
observed that when Cd  is more,      is more. 

Fig. 10 shows the effect of orifice thickness on the local 
pressure drop during the single-phase flow of water. It clearly 
shows that local pressure drop increases with increase in 
Reynolds number and for the same value of Reynolds number 
local pressure drop is less for thick orifices. With turbulent 
flows through orifices the contraction coefficients are found to 
be slightly higher for contraction area ratio σ = 0.73 than that 
for σ = 0.54.  

B.  Two-phase Flow 
The pressure loss due to two-phase flow of air-water 

mixtures through orifice is calculated from computed 
upstream and downstream pressure gradients. The procedure 
is based on the assumption that the orifice does not affect the 
pressure profiles with respect to the unrestricted flow. 
Pressure drop for two-phase air-water flow through the orifice 
having s/d = 0.025 and s/d = 0.59 in 60 mm diameter pipe for 
σ = 0.73 and σ = 0.54 are shown in Fig. 11a and b respectively 
for a constant  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Contraction coefficient as a function of local 
Reynolds number for σ = 0.73. 

Fig. 10 Single-phase pressure drop as a function of 
local Reynolds number for σ = 0.54. 

Fig. 11 Local pressure drop as a function of gas superficial 
velocity and orifice thickness (a) σ = 0.54, (b) σ = 0.73. 

(a) 

(b) 

(a) 

c

c

c



International Journal of Engineering Trends and Technology- Volume3Issue4- 2012 
 

ISSN: 2231-5381   http://www.internationaljournalssrg.org  Page 550 
 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

9
 = 0.73
Vsl=1.1m/s

 

 

Tw
o-

ph
as

e 
m

ul
tip

lie
r

Gas volume fraction, xv

 s/d=0.025
 s/d=0.59
 Homog.  (Eq.11)
 Morris    (Eq.13)
 Simpson (Eq.14)
 Chisholm(Eq.12)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

 = 0.73
Vsl=2.0m/s

 
 

Tw
o-

ph
as

e 
m

ul
tip

lie
r

Gas volume fraction, xv

 s/d=0.025
 s/d=0.59
 Homog.  (Eq. 11)
 Morris    (Eq. 13)
 Simpson (Eq. 14)
 Chisholm (Eq. 12)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

superficial velocity of water and different superficial velocity 
of air. It can be observed that the pressure drop increases with 
increasing the volume fractions of air. The same trend is 
observed for the flow through 40 mm diameter pipe. Typical 
pressure drop values as a function of gas and liquid superficial 
velocities are shown in Fig. 11a and b where corresponding 
experimental (Fossa and Guglielmini [9]) values have been 
plotted in the same graph. It can be marked from Fig.11 that 
the agreement between the computation and the experimental 
values are pretty nice specially taking into account the 
complicated CFD equations those have been used to compute 
the pressure profiles in the present computation. It can also be 
observed that the effect of the orifice thickness on pressure 
drop is stronger with the orifice of the area flow ratio σ = 0.73, 
while the pressure drops across the orifice of the area ratio σ = 
0.54 through different orifice thicknesses are always 
comparable, with deviations less than 15%. Further it can be 
noticed that pressure drop increases with a decrease in orifice 
thickness irrespective of the area ratios. 

The singular two-phase multiplier φlo
2 has been obtained by 

comparison with single phase computed pressure drops 
considering only liquid flow. The results are shown in Fig. 
12a and b with reference to the restrictions having σ = 0.54 
and in Fig. 13a and b that refer to the larger area flow ratio 
constrictions of σ = 0.73. All these figures contain the data for 
both 60 mm inner diameter pipe (empty symbols) and the 40 
mm inner diameter pipe (filled symbols). The numerical 
results for two phase multiplier are compared with the 
predictions of the homogeneous model (Eq. (12)), and with 
the values calculated by the relationships of Chisholm for 
thick orifices (Eq. (13) with B=1.5), Morris (Eq. (7) and (14)) 
and Simpson et al. (Eq. (11) and (15)). The two-phase 
multiplier for thin orifices (s/d = 0.025) are found to be quite 
well correlated by Morris equation. Thicker orifices (s/d = 
0.59) are characterized by higher pressure multipliers whose 
values are quite well fitted by the proper Chisholm formula. It 
can be observed from Fig. 13, the pressure multipliers 
pertinent to the area ratio of σ = 0.73 show values close to 
unity (or even lower) when the gas volume fraction is less 
than about 0.5. No available relationships can account for this 
effect, which seems to be peculiar to these moderate flow area 
restrictions. The Saadawi et al. relationship (Eq. (16)) has 
been discarded from the present comparisons due to the fact it 
under predicts the numerical as well as the experimental 
values with differences even greater than 60%.  

The main conclusion from pressure multiplier analysis is 
that the influence of liquid flow rate is weak. Furthermore, it 
can be observed that the dimensionless pressure drops 
obtained for s/d = 0.025 (thin orifice) result in a narrow range 
of values. The thicker orifice (s/d = 0.59) are characterized by 
higher pressure multipliers, which can show values higher 
than those predicted by the homogeneous model (Eq. (12)). 
This occurrence can be mainly ascribed to the fact that as the 
restriction thickness increases, the single-phase pressure drops 
decrease much more than the two-phase pressure drops 
increase at the same liquid flow rate (Fig. 10 and Fig. 11a and 
b). The numerical results pertinent to thick orifices are quite 
well fitted by Chisholm formula Eq. (13) with B=1.5, which 
account for orifice thickness. Finally it is evident that the pipe 
diameter has very little effect on the two-phase multiplier.  

V. CONCLUSIONS 
1. For the flow through thin orifice (s/d = 0.025), the vena 

contracta is formed outside the restriction, where as for 
the flow through thick orifice (s/d = 0.59), vena contracta 
is always formed inside the restriction. 

2. Pressure drop ΔP across the orifice increases with a 
decrease in orifice thickness and pressure drop decreases 
with an increase in area ratio. 

3. The contraction coefficient is found to be independent of 
the Reynolds number for values above 5×104. With 
turbulent flow through orifices the contraction 
coefficients for single phase flow of water are found to be 
slightly higher for contraction area ratio σ = 0.73 than that 
for σ = 0.54.  

Fig. 12 Pressure multiplier versus gas volume 
fraction for different orifice thickness, σ = 0.54 

(a) slV = 0.6 m/s, (b) slV  = 2.0 m/s  

(b) 

Fig. 13. Pressure multiplier versus gas volume fraction for different 
orifice thickness, σ = 0.73 (a) Vsl = 1.1 m/s, (b) Vsl = 2.0 m/s (filled 

symbols for D = 40 and empty symbols for D = 60 mm). 

(a) 

(b) 



International Journal of Engineering Trends and Technology- Volume3Issue4- 2012 
 

ISSN: 2231-5381   http://www.internationaljournalssrg.org  Page 551 
 

4. In single-phase flow the contraction coefficient is found 
to be in good agreement with the experimental data [9] as 
well as with the Chisholm [3] formula predictions. The 
computed pressure drop across the thin orifice having 
thickness to diameter ratio s/d = 0.025, is more than that 
across thick orifice having thickness to diameter ratio s/d 
= 0.59.  

5. The two-phase multiplier for thin orifices (s/d = 0.025) 
are found to be quite well correlated by Morris equation. 
Thicker orifices (s/d = 0.59) are characterized by higher 
pressure multipliers whose values are quite well fitted by 
the proper Chisholm formula.  

6. The two-phase multipliers pertinent to the orifice having 
area ratio σ = 0.73 show values close to unity (or even 
lower) when the gas volume fraction is less than about 0.5. 
The pipe diameter has very little effect on the two-phase 
multiplier. 
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