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Abstract 

In many number-theoretic cryptographic algorithms, 

encryption and decryption are of the form 𝑥𝑛 𝑚𝑜𝑑 𝑝 
where 𝑥, 𝑛 and 𝑝 are integers. When exponentiation 

operation is involved in many cryptosystems, it takes 

more time than any normal arithmetic operations. The 

computation time can be reduced by using repeated 

multiplications rather than using exponential operation. 

This can also be further reduced by using addition chain. 

Modular exponentiation with addition chain is used to 

determine the correct sequence of multiplications. There 

exist several algorithms in the literature to generate the 

optimal addition chain for the given integer. A novel 

bacteria foraging optimization algorithm based addition 
chain has been proposed and it is verified with the 

existing state of art of addition chain algorithms like 

genetic algorithm, evolutionary programming etc., in this 

paper. 

Keywords - Addition Chain, RSA, ECC, PSO, SSO, 

BFOA, Optimization. 

 

I. INTRODUCTION 

An Addition Chain (AC) can be thought of as a sequence 

of integers in which the first number is always 1 and the 

last number is always 𝑛, where n is an integer for which 

ACs are to be generated. For finite fields, operations such 

as square roots or inversions, exponentiations can be 

performed efficiently by utilizing an optimal AC, the 

smallest such AC sequence to reach n. In particular, fast 
exponentiation and inversion are paramount to the 

performance of scalar point multiplication k[𝑃] where k is 

a scalar and 𝑃 is a point in elliptic curve (EC) in elliptic 

curve cryptography (ECC) [1] [2], pairings in pairing-

based cryptosystems, and computing isogenies in the 

quantum-resistant isogeny-based cryptosystems [23]. To 

get the next number, there are two steps normally used in 

AC. They are addition and doubling steps, i.e., to get the 
next number (intermediate number) in AC, any two 

previous numbers are added together in addition step, 

whereas in the doubling step, the current number is 

multiplied by two. To generate the AC for given n, two 

types of algorithms are normally used viz., deterministic 

and stochastic or bio-inspired. 

In deterministic algorithms, since everything is 

deterministic and the optimal AC may not be obtained at 
all times. The binary method, factor method, window 

method, sliding window method, Fibonacci method, 

Lucas method, continuous fraction method, etc., are 

examples of the deterministic algorithm. Evolutionary 

algorithms or bio-inspired are inspired by the idea of 

either natural evolution or social behavior of insects or 

birds. The optimal ACs produced by evolutionary 

algorithms are not obtained by a single run. Many more 

runs are needed to obtain optimal AC, which will 

eventually take more times. Some examples of 

evolutionary algorithms are Genetic Algorithm(GA), 
Artificial Immune System(AIS), Ant Colony 

Optimization(ACO), Particle Swarm Optimization 

(PSO), Simplified Swarm Optimization(SSO), etc. 

Generating optimal AC for the given integer is an NP-

hard problem because too many optimal ACs are 

generated. For example, different possible optimal ACs 

for the number 21 with length i.e., l(21) = 6 are: 

  

 

1-2-3-4-7-14-21 

1-2-3-5-7 -14-21 

1-2-3-5-8-13-21 

1-2-3-5 -8-16-21 

1-2-3-5-10-11-21 

1-2-3-5-10-20-21 

 

 

1-2-3-6-9-15-21 

1-2-3-6-9-18-21 

1-2-3-6-12-15-21 

1-2-3-6-12-18-21 

1-2-4-6-7-14-21 

1-2-4-8-16-20-21 

 

 

1-2-4-5-10-20-21 

1-2-4-8-9-12-21 

1-2-4-8-9-13-21 

1-2-4-8-9-17-21 

1-2-4-8-10-11-21 

1-2-4-8-10-20-21 

 

1-2-3-6-9-12-21 

1-2-4-8-12-13-21 

1-2-4-8-12-20-21 

1-2-4-8-16-17-21 

1-2-3-6-7-14-21 

https://ijettjournal.org/archive/ijett-v69i2p205
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This is because 7 can be obtained by adding (7 = 3 + 4, 7 

= 2 + 5, 7 = 1 + 6), 8 can be obtained by adding (8 = 4 + 

4, 8 = 3 + 5) etc. 

Bacteria foraging is one of the optimization and 

evolutionary algorithms. Kevin M. Passino proposed it in 

2000, and it has been widely accepted as a new nature-

inspired optimization algorithm [15]. It is inspired by the 

social foraging behavior of Escherichia Coli, i.e., a 

bacteria present in the human intestine and has drawn 

many researcher's attention. The underlying biology 

behind foraging is locomotion. During the foraging of the 

real bacteria, locomotion can be performed by a set of the 

tensile flagella and optimization process is achieved by 
foraging behaviour of bacteria in bacterium seeks to 

maximize the energy obtained per unit time spent during 

foraging. Suppose the flagella are rotated in the 

clockwise direction by the bacterium. In that case, the 

flagellum pulls on the cells, which results in independent 

movement of flagella, and the bacterium tumbles with 

lesser numbers of tumbling. Swimming at a very fast rate 

of the bacterium is performed with the flagella moving in 

the counter-clockwise direction. 

The foraging strategy of E.coli is achieved by four 

processes viz., chemotaxis, swarming, reproduction and 

dispersal. Chemotaxis is a process which simulates the 

movement of E.coli cell through swimming and tumbling 

via flagella. Movement of E.coli bacterium can be 

performed in two ways viz., (i) swim for some time in the 

same direction or tumble (ii) alternate between the swim 

and tumble for the entire lifetime. In the swarming 

process, a group of E.coli cells arranged themselves in a 

traveling ring by moving up the nutrient gradient when 

placed amidst a semisolid matrix with a single nutrient 
chemo-effecter. The healthy bacteria asexually split into 

two bacteria, which are then placed in the same location 

while the least healthy bacteria eventually die in the 

reproduction process. In the elimination and dispersal 

process, gradual or sudden changes in the local 

environment, i.e., the significant local rise of temperature 

or due to unavoidable events, all the bacteria in a region 

are killed, or a group is dispersed into the new location. 

In BFOA, generally, the bacteria can be moved for a long 

distance in a friendly environment. When sufficient food 

they had, their length also increased and will break in the 

middle to form a replica of themselves in the presence of 

a suitable environment. In swarm intelligence concept, 

this chemotactic progress may be eliminated and also a 

group of bacteria can move on to some areas or introduce 

some others related to the occurrences environmental 

changes like the event of elimination- dispersal done in 

the real bacterial population (where all the bacteria in a 

region are killed or a group will be dispersed into a new 

part of the environment). 

II. RELATED WORK 
 

In [3], Hugo Volger presented several results on l(𝑛).  In 

particular, they determined l(𝑛) for all 𝑛 satisfying l(𝑛)≤3 

and proved ⌊𝑙𝑜𝑔𝑛⌋+2≤𝑙(𝑛) for all 𝑛 satisfying 𝑠(𝑛) ≥ 3, 

where 𝑠(𝑛) is the extended sum of digits of 𝑛. In [4], 

Y.H. Tsai and Y.H. Chin found some mathematical 

properties of the shortest-length AC for certain integers 

whose binary patterns meet some special forms; and the 
correctness of these properties was proved. In [5], 

Bergeron et al. proposed generating the shortest AC 

based on the continued fraction. They gave a general 

upper bound for the complexity of continued fraction 

methods as a chosen strategy function. Thus, the total 

number of operations required for the generation of an 

AC for all integers up to 𝑛 was shown to be (𝑛 𝑙𝑜𝑔2 𝑛𝛾𝑛), 

where 𝛾𝑛 is the complexity of computing the set of 

choices corresponding to the strategy and proved an 

analogy of the Scholz-Brauer conjecture. 

In [6], F. Bergeron et al. generated a method of fast 

addition chains with a small length of positive integer 𝑛, 

using continued fraction up to 1000 obtained with 

optimal length, (with 29 exceptions optimal length plus 

one). A new algorithm of optimal ACs described in [8]  

and also faster than the best-known methods. It is 

applicable for single values and slower than the best-

known methods. This does not require any pre-computed 
values and is considered suitable for finding optimal ACs 

for point values. 

Bounds on sums of ACs and properties of optimal ACs 

are discussed in [9].The study results that the final step in 

an optimal AC of an even number always have doubling, 

and also the sum of an optimal AC for an odd number 𝑛is 

asymptotically nearly 5𝑛2. In [10], Noboru Kunihiro and 

Hirosuke Yamamoto developed two systematic methods 

viz., run-length encoding (RLE) and hybrid for 

generating short AC. They proved that the hybrid method 

was far better than RLE with a reduced 8% of the AC 

length. 

In[11], Nareli Cruz-Cortéset al. explored the usage of a 

GA approach for the problem of finding optimal 

(shortest) ACs for optimal field exponentiation 
computations. The GA heuristic presented in this work 

was capable of finding almost all the optimal ACs for 

any given fixed exponent 𝑒with 𝑒< 4096. They found 

that our GA strategy's percentage error was within 0.4% 

of the optimal for all cases considered. In other words, 

for any given fixed exponent 𝑒 with 𝑒< 4096, they found 

that strategy was able to find the requested shortest AC in 

at least 99.6% of the cases. In [12], N. Cruz- Cortés et al. 

proposed an artificial immune system(AIS) to generate 

an optimal AC. In that paper, they dealt with the optimal 
computation of finite field exponentiation, which is a 

well-studied problem with many important applications 

in error-correcting codes and cryptography. 
 

In [13], Raveen R. Gounder et al. discussed a new 

strategy for doubling-free (SPA-resistant) short addition-

subtraction chain(GRASC) for an arbitrary integer by 

using a precise golden ratio. In this, 12% to 28% 

reduction was obtained in the average chain length 

compared to other doubling-free AC methods. In [14], 

Alejandro Le´on-Javier et al. discussed the PSO 

algorithm to find short ACs with different exponents.  
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In[16], Mohamed M. Abd. Eldayamet al. proposed an 

algorithm for shorter AC based on the window method 

with small width using 2’s complement. They proved 

that the proposed algorithm was more efficient than the 

last result with a 20% minimum. In[17], S Domínguez-
Isidro and E Mezura-Montes et al. proposed an algorithm 

using evolutionary programming to find the minimal 

length AC and the results obtained were more promising 

than the other nature-inspired metaheuristic approaches 

but with a lower number of evaluations per run. The 

proposed EP algorithm comprised the solution encoding 

with suitable fitness function and initial population, a 

mutation operator, and the survivor selection mechanism, 

and EP does not use other operators such as crossover nor 

additional mechanisms like parent selection in GAs. 
 

 

In [18], a note an addition chain was presented. Niel 
Michael Clift [19] proved the perfect matches in the 

Scholz–Brauer conjecture l(2n −1) = l(n) + n − 1 for new 

values. The minimal sequence of minimal multiplications 

required for performing modular exponentiation using 

Brauer Chains' concept by GA discussed in [20]. 

In [21], K. Mani proposed division based AC to generate 

the optimal ACs for the small exponents, exactly 

matched with ACs generated by the latest methods. But, 
for some large exponents, there was a very small increase 

in chain length (at most three). 
 

In [24], a survey of the AC problem for optimizing the 

AC was made and effectively applied to implement a 

public-key cryptosystem. Mani K and Viswambari M 

[25] implemented a new method for the generation of the 

AC using graph G(V,E) where in the G's vertices refer to 

the numbers in the AC and edges refer to the move from 

one to another number in the AC. They have proposed 

two methods viz., Graph-Based All Possible AC 

(GBAPAC) generated all possible optimum ACs for the 
given integer n and Graph-Based Minimal AC 

(GBMAC), which generated the minimum number of 

optimum ACs by considering mutually exclusive edges 

starting from every number and also proved with the 

conjectures like Scholz-Brauer. 
 

In [26], P. Anuradha Kameswari and B. Ravitheja derived 

a Lucas AC for any integer n to obtain Lucas sequence 

𝑉𝑛(𝑎, 1) and also proved that the computation of 𝑉𝑛(𝑎, 1) 

using this Lucas AC is based on 𝑉𝑥+𝑦(𝑎, 1) for 𝑥, 𝑦, 𝑥 – 𝑦 
in the Lucas AC. In [27], Stjepan Picek et al. derived that 

the GA approach with an novel encoding using crossover 

and mutation operators to minimize the length of the ACs 

with respect to a given exponent. Aaron Hutchinson and 

Koray Karabina implemented algorithms[28], for 

multidimensional differential ACs and applied these chains 

to ECC. This algorithm has the unique key features using n 

dimension. With key efficiency cum security features like 

uniformity, parallelized, and differential addition formulas 

were adopted by allowing speed using precomputation cost 

and storage requirements.  

Dustin Moody and Amadou Tall [29], derived minimal 

chains with low Hamming weight using addition-

subtraction chains with Lucas addition-subtraction in using 

ℓ−(𝑛) the minimal length 𝑛,  and proved that |ℓ−(2𝑛) − 

ℓ−(𝑛)| ≤  1  for all integers 𝑛 of 𝐻𝑎𝑚𝑚𝑖𝑛𝑔𝑤𝑒𝑖𝑔ℎ𝑡 ≤ 4 to 

have arrived a conclusion that minimal addition- 
subtraction chains for low Hamming weight integers, with 

the consideration of odd integers. In [30], Hazem M. Bahig 

and Yasser Kotb implemented a new parallel algorithm to 

obtain minimal AC for 𝑛. The experimental studies on 

multicore systems revealed that this algorithm's run time 

worked faster than the sequential one and obtained the 

maximum speed up of 2.5 times than the best known 

sequential algorithm. 
 

In [31], A. Mullai and K. Mani proposed Particle Swarm 

Optimization (PSO) and Simplified Swarm Optimization 
(SSO) with ACs in RSA and ECC with two emulators, 

android and window. The processing time, power 

consumption was taken for encryption, decryption process, 

and security of the above was analyzed and also proved 

that the SSOAC optimization with RSA to reduce 

operational power and SSOAC optimization with ECC for 

more security. Narendra Mohan [32], discussed in 

Wireless Sensor Networks (WSNs), to enhance the 

network lifetime and minimize the energy consumption in 

sink nodes contains additional resources like long-range 

antenna, powerful batteries, large memory. This should be 
achieved using Enhanced Emperor Penguin Optimization 

(EEPO) algorithm.  

 

III. THEORETICAL BACKGROUND 

This section describes some mathematical preliminaries 

required for AC. 

Definition 3.1 (Addition Chain) 

An AC [7] for a positive integer n is a sequence, 1 = 𝑎0 ≤ 

𝑎1≤ ⋯ ≤ 𝑎𝑟 = 𝑛 such that each member after 𝑎0 is the sum 

of two earlier (not necessarily distinct) ones. The number 

l(𝑛) is called the length of the AC. It is noted that if the 

value of 𝑛 is relatively small, the exact value of l(𝑛) is 
known.  

Definition 3.2 (Optimal Addition Chain) 

An AC is optimal if its length is the smallest among all 

possible ACs. For example, 1− 2 − 3 − 6 − 12 − 13 is one 

of the optimal chains for 13, and with l(13) =5. 

The construction [20] of each element of an AC is called 

a step. For an AC, 1 = 𝑎0 ≤ 𝑎1 ≤ ⋯ ≤ 𝑎𝑟 = 𝑛, the 

following steps are involved. Doubling step: 𝑎𝑖 = 2𝑎𝑖−1, 

𝑖> 0. Non-doubling step: 𝑎𝑖 = 𝑎𝑗 + 𝑎𝑘, 𝑖>𝑗>𝑘 ≥ 0. The 

steps of the form 𝑎𝑖 = 2𝑎𝑗, 𝑗 ≤ 𝑖 − 2 are defined as non-
doubling steps.  

Big step: 𝜆 (𝑎𝑖) = 𝜆 (𝑎𝑖−1) + 1. 

Small step: 𝜆 (𝑎𝑖) = 𝜆 (𝑎𝑖−1). 

Thus, the length of the AC, l(𝑛) can be split into two 

components as l(𝑛) = 𝜆(𝑛) +𝑆(𝑛). where 𝑆(𝑛) is the 

number of small steps in an optimal AC for n. 
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IV. BFOA_AC - PROPOSED METHODOLOGY 
 

In the proposed methodology, the concept of BFOA is 

used to generate the optimum length AC for an integer n, 

which utilizes the foraging behaviors of bacteria. i.e., 

chemotaxis, swarming, reproduction, and elimination 
dispersal [15], are the four principal mechanisms used in 

BFOA. In this optimization, a virtual bacterium called 

search agent is one trial solution that moves on the 

functional surface to find the optimal length AC. The 

cost or fitness function is computed with a minimum 

length approach based on the nutrient concentration of 

the bacterium's immediate environment, searching for 

numbers in AC. The swarming step is not considered for 

the generation of AC in this method. The following 

notations are used in generating the optimal AC in this 

paper. 

𝑗 Index for the chemotactic step 

𝑘 Index for the reproduction step 

𝑖 Index for the elimination-dispersal  

event 

𝑆 Total number of the bacterium in the 

population 

𝑑 The dimension of the search space. Here, 𝑑 

= 1 

𝑆𝑤 The swarming length 

𝑅𝑃𝑛 Number of reproduction steps 

𝐸𝐷𝑛 Number of elimination-dispersal events 

𝑃𝑒𝑑 Elimination-dispersal probability 

𝐶(𝑖) The magnitude of the next number in the 

random direction specified by the tumble 

To generate the AC for any integer 𝑛, the first number is 

always 1, and the second number is 2, i.e., AC starts with 

𝑎0 = 1 and 𝑎1 = 2 and last number 𝑎𝑟 = 𝑛. Let (𝑖, 𝑘, 𝑙) = 

{(𝑗, 𝑘, 𝑙|𝑖 = 1,2, …, 𝑆) represents each number in the AC 

in the population S at the 𝑗th chemotactic, 𝑘th 

reproduction, and 𝑙th elimination-dispersal steps. It is 

noted that initially, the length of AC is taken as very 

large for the given integer 𝑛. Too many ACs are 

generated for 𝑛, but all ACs generated are not necessarily 

optimum. Moreover, the generation of optimal AC is an 

NP-hard problem. The prime steps used in BFOA related 
to generating the AC are as follows. 
 

A. Search Space 
 

Here, the search space is taken as one 

dimension(i.e.,𝑑=1), and also the integer numbers are 

involved in generating AC for any 𝑛. Since the 

difference between intermediate numbers in AC is finite, 

the search space is also finite. 

 

 

 

 

B. Chemotaxis 
 

The movement of an E.coli cell through swimming and 
tumbling via flagella is simulated by the chemotaxis 

process. When a bacterium meets a favourable 

environment (rich in nutrients and noxious free), it will 

continue swimming in the same direction. When it meets 

an unfavorable environment, it will tumble, i.e., change 

its direction. In BFOA[22], E.coli can swim for a period 

of time in the same direction, or it may tumble and 

alternate between these two modes of operation for the 

entire life time. It is the most important step in 

determining the optimal AC for 𝑛. For AC generation, 

swimming and tumbling represent addition and doubling 
step, respectively. The goal is to move to let the 

bacterium search for the next number in the AC with 

minimal step. 
 

a) Minimum Intermediate Number in AC 
 

It is noted that the number of intermediate numbers 

between 2 and 𝑛 should be minimum and it is obtained by 

a minimum number of steps as far as possible so that 𝑙(𝑛) 

could be minimized by considering all the directions 

(previous numbers) from the current bacterium position 

(present current number) can be chosen for the next step. 

Initially bacterium i is positioned at number 1, Let m=0 

i.e., 𝑎0 = 1. From 1, then it should move to 2. Now, 𝑚 = 

𝑚 + 1  i.e., 𝑎1= 2, 𝐴𝐶  ← 1 − 2; 𝑙(𝐴𝐶)  = 1. From 2, it can 

move to either 3 or 4, Now, 𝑚 =𝑚 + 1 
 

 2𝑎𝑚−1=𝑎𝑚+𝑎0, i>𝑗>𝑘≥0                                          ...(1) 

𝐴𝐶←𝐴𝐶||𝑎𝑚                                                        ...(2)  

 Now, 

new_l(AC) = old_l(AC) + l  or  l(AC) = m                ...(3) 

All the intermediate numbers obtained in this step are 

added to the minimal set Φ𝑚𝑖𝑛,i.e., Φ𝑚𝑖𝑛 = {𝑎𝑚}. A 

random intermediate number ≤ 𝑎𝑚 is chosen from this set, 

and it indicates the direction of movement (i.e., from 

which AC starts) of bacterium𝑖. 

∆(𝑖) =  𝑟𝑎𝑛𝑑{ 𝑥∈Φ𝑚𝑖𝑛}                                               ...(4) 

Let, (𝑗, 𝑘, 𝑙) represents 𝑖th bacterium with 1-dimensional  

vector represented as, 1,2, …, 𝑆at 𝑗th chromatic, 𝑘th 

reproductive and 𝑙th elimination-dispersal step. Let C(𝑖) 
be the step size, which is taken as a unity because, from 

the current number in the AC, only one next number in 

the AC is generated based on previous numbers. Thus, 

the movement of the bacterium may be represented in the 

chemotaxis process as 

(𝑗 + 1, 𝐾) =  𝜃𝑖(𝑗, 𝑘) + 𝐶(𝑖)
∆(𝑖)

√∆𝑖𝑇∆(𝑖)
                         ...(5) 

 

 

 

Where ∆ indicates a vector in the random direction 

whose elements are [1, 𝑥]. 

The movement of the bacterium is explained with tree 

diagram as shown in fig. 1. 
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Fig.1: The Movement of Bacterium 

C. Reproduction and Dispersal Step 

Local search is provided by chemotaxis step, and the 
speed of convergence is achieved through the 

reproduction process. The bacteria which yields the 

maximal length of AC for n is called the least healthy 

bacteria, and it never produces the optimal length AC, 

which eventually dies. Each of the healthiest bacteria 

(yields minimum length AC) is asexually split into two 

bacteria, placed randomly. The dispersion process 

happens after a certain number of reproduction process. 

Depending on the probability, some bacteria were chosen 

to be killed or move to another position within the 

environment.  

 

V. BFOA_AC – AN EXAMPLE 

In order to understand the relevance of the work, let, 𝑛 = 

14, 𝑖 = 1, 𝑚 = 0, 𝑎𝑚 = 𝑎0 = 1 and initially bacteria 𝑏1 is 

positioned at 𝑎0. With the chemotaxis step, it moves to 2. 

Now, 𝑚 = 𝑚 + 1, i.e., 𝑎1 = 2 and l(𝑎1) = 1. From 𝑎1, 𝑏1 

moves to either 3 or 4 because 𝑎2 = 𝑎1 + 𝑎0 = 2 + 1 = 3 or 

𝑎2 = 2𝑎1 = 4. Now, 𝑚 = 2. Thus, Φ𝑚𝑖𝑛={3,4}. Let the 

intermediate number in AC randomly selected from Φ𝑚𝑖𝑛, 

i.e., ∆(1) = 3, Thus, the movement of 𝑏1 is from 3, i.e., 

𝑎2=3 and the corresponding AC up to this stage is 1 − 2 − 

3 and 𝑙(𝑎2) = 2. From 𝑎2, 𝑏1 moves to either 4 or 5 or 6 

because 𝑎3  = 2 𝑎2  = 6   or  𝑎3  = 𝑎2 + 𝑎0  = 3 + 1 = 4   or  

𝑎3  = 𝑎2 + 𝑎1= 3 + 2 = 5.Now, 𝑚 = 3.  Thus, Φ  ={4,5,6}.  

Let 5 is selected  randomly  from the set Φ𝑚𝑖𝑛. Thus, ∆(1) 

= 5. The movement of 𝑏1 is from 5, i.e., 𝑎3 = 5. 

Correspondingly, AC up to this stage is 1 − 2 − 3 − 5 and 

l(𝑎3) = 3. From 𝑎3, 𝑏1 moves to either 6 or 7 or 8 or 10 

because 𝑎4 = 2𝑎3 = 10 or 𝑎4  =𝑎3 + 𝑎0  = 5 + 1 = 6  or 𝑎4  

= 𝑎3 + 𝑎1= 5 + 2 = 7 or 𝑎4 = 𝑎3 + 𝑎2 = 5 + 3 = 8. Now, 𝑚 

= 4. Thus, Φ𝑚𝑖𝑛 = {6,7,8,10}.  Let  7 is selected randomly 

from the set Φ𝑚𝑖𝑛. Thus, ∆(1) =7. The movement of b1 is 

from 7, i.e., 𝑎4  = 7. Correspondingly, AC up to this stage 

is  1 − 2 − 3 − 5 − 7 and 𝑙(𝑎4) = 4. From 𝑎4, 𝑏1 moves to 

either 8 or 9 or 10 or 12 or 14 because 𝑎5 = 𝑎4 + 𝑎0 = 7 + 

1 = 8 or 𝑎5 = 𝑎4 + 𝑎1 = 7+2 = 9 or 𝑎5 = 𝑎4 + 𝑎2 = 7+3 = 10 

or 𝑎5 = 𝑎4 + 𝑎3 = 7 + 5 = 12 or 𝑎5 = 2(𝑎4) =2(7) = 14. 

Now,  𝑚  = 5,  Thus,  Φ𝑚𝑖𝑛  = {8,9,10,12,14}. Let 14 is 

selected randomly from the set Φ𝑚𝑖𝑛. Thus, ∆(1) = 14. 

The process is terminated because it reaches 𝑛 = 17. 

Correspondingly, AC up to this stage is  

1 − 2 − 3 − 5 − 7 − 14 and l(𝑎5) = 5. 

Suppose, other numbers from Φ𝑚𝑖𝑛 are selected, even 

though it reaches 14 in the subsequent stages, l(14) is 

increased, and the corresponding bacteria will eventually 

die. Repeat the said process for other numbers, and the 

other ACs for 14 with l*(14) are given below. 

 

VI. IMPLEMENTATION 

The proposed methodology is implemented in VC++ and 

AC for the numbers up to 1024 are generated. It is shown 
in table 1. In table 1, l(r) indicates the sum of all optimal 

addition chains up to r.  Table 1 exhibits the total l (up to 

1024). 

  

TABLE 1 TOTAL LENGTH OF OPTIMAL ADDITION CHAIN UPTO 1024 

 

 

 

 

 

 

1-2-3-4-7-14 1-2-4-5-7-14 1-2-4-6-8-14 

1-2-3-5-7-14 1-2-4-5-9-14 1-2-4-6-10-14 

1-2-3-6-7-14 1-2-4-5-10-14 1-2-4-6-12-14 

1-2-3-6-8-14 1-2-4-6-7-14 1-2-4-8-10-14 

1-2-3-6-12-14  1-2-4-8-12-14 

r 001-

100 

101-

200 

201-

300 

301-

400 

401-

500 

501-

600 

601-

700 

701-

800 

801-

900 

901-

1000 

1001-

1024 

l(r) 663 918 1011 1071 1121 1148 1183 1205 1230 1262 307 

Total 4784 6028 307 

Grand Total:11119 
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Table 2 reveals AC generated for some hard exponents 

by BFOA where the hard exponent is the one for which 

AC is not easily found. Table 3 compares the optimal AC 

up to integers 1024 produced by the existing algorithms 

and the proposed BFOA. 

TABLE 2 AC FOR HARD EXPONENTS BY BFOA 
 

Exponents 

(E) 

Optimal length (E) 

2000 1 – 2 – 3 – 6 – 7 – 14 – 15 – 30 – 31 – 62 – 124 – 

125 – 250 – 500 – 1000 – 2000. 

2048 1 – 2 – 4 – 8 – 16 – 32 – 64 – 128 – 256 – 512 – 

1024 - 2048. 

4096 

 

1 – 2 – 4 – 8 – 16 – 32 – 64 – 128 – 256 – 512 – 

1024 – 2048 - 4096. 

65131 1 – 2 – 3 – 5 – 7 – 11 – 19 – 29 – 47 – 71 – 127 – 

191 – 379 – 607 – 1087 – 1903 – 3583 – 6271 – 

11231 – 18287 – 34303  - 65131. 

196591 1 - 2 - 3 - 5 - 7 - 11 - 19 - 29 - 47 - 71 - 127 - 191 - 

379 - 607 - 1087 - 1903 - 3583 - 6271 - 11231 - 

18287 - 34303 - 65131 - 110591 – 196591. 

1176431 1 - 2 - 3 - 5 - 7 - 11 - 19 - 29 - 47 - 71 - 127 - 191 - 379 - 607 - 

1087 - 1903 - 3583 - 6271 - 11231 - 18287 - 

34303 - 65131 - 110591 - 196591 - 357887 - 

685951 – 1176431. 

2211837 1 - 2 - 3 - 6 - 9 - 15 - 30 - 60 - 120 - 126 - 252 - 

504 - 1008  - 2016 - 4032 - 8062 - 16128 - 16143 

- 32286 - 64572 - 129144 - 258288 - 516576 - 

1033152 - 2066304 - 2195448 - 2211591 - 

2211717 – 2211837. 

4169527 1 - 2 - 3 - 5 - 7 - 11 - 19 - 29 - 47 - 71 - 127 - 191 - 

379 - 607 - 1087 - 1903 - 3583 - 6271 - 11231 - 

18287 - 34303 - 65131 - 110591 - 196591 - 

357887 - 685951 - 1176431 - 2211837 – 4169527. 

14143037 1 - 2 - 3 - 5 - 7 - 11 - 19 - 29 - 47 - 71 - 127 - 191 - 

379 - 607 - 1087 - 1903 - 3583 - 6271 - 11231 - 

18287 - 34303 - 65131 - 110591 - 196591 - 

357887 - 685951 - 1176431 - 2211837 - 4169527 - 

7624319 – 14143037. 

 

From table 3, it is observed that the total length of optimal 

AC  produced by BFOA with integers up to 1024 is 11119. 

They are almost the same as the optimal addition chains 

and their length produced by EP.  

TABLE 3 COMPARISON OF AC UPTO 

INTEGERS 1024(PRODUCED BY EXISTING 

ALGORITHMS AND THE PROPOSED BFOA) 

 

 

VII. CONCLUSION 

BFOA based AC has been thought of and it is 

implemented successfully. In this paper, ACs produced by 

some integers are proved both theoretically and 

experimentally. From the experimental results, up to 

integers 1024, the proposed BFOA algorithm produces the 

same optimal length AC which is almost equal to other 

existing evolutionary algorithms like AIS, GA, and  EP. 

Further, the optimal length of AC for some hard exponents 

are the same as other existing evolutionary algorithms. 

This paper also provides an idea about the generation of 

AC based on BFOA. In future, this concept may be 

incorporated into  public-key algorithms like RSA and 
ECC to reduce the encryption and decryption time because 

the said algorithms are used in mobile devices. 
 

REFERENCES 
 

[1] N Koblitz, Elliptic Curve Cryptosystems, Mathematics of 

Computation, 48(1982) 203-209. 

[2] I Blake, G Seroussi and NP Smart, Elliptic Curves in 

Cryptography, Ser. London Math. Soc. Lecture Note Series, 

Cambridge Univ. Press,1999. 

[3] Hugo Volger, Some Results on Addition/Subtraction Chains, 

Information Processing Letter, Elsevier, 1985. 

[4] Y H TsaiandY H Chin, “A Study of Some Addition Chain 

Problems”, International Journal of Computer Mathematics, 22(02) 

(1987) 117-134. 

[5] R Begeron, J Berstel, S Brlek, and C Duboc, Addition Chains 

Using Continued Fractions, Journal of Algorithms, Elsevier, 

10(1989)  403-412. 

[6] Bergeron, JBerstel and S Brlek, Efficient Computation Of Addition 

Chains”, Journalde Théorie des Nombresde Bordeaux, 6(1)(1994)  

21-38. 

[7] Donald E Knuth, The Art of Computer Programming, 

Seminumerical Algorithms, 2(3), Addison-Wesley Longman 

Publishing Co., Inc., Boston, MA, USA,1997. 

[8] Gordon DM, A Survey of Fast Exponentiation Methods, Journal of 

Algorithms,  27(1998). 

[9] H Zantema, Minimizing Sums of Addition Chains, Journal of 

Algorithms, Elsevier, 12(2) (1999) 281-307. 

[10] Noboru Kunihiro and Hirosuke Yamamoto, New Methods for 

Generation of Short Addition Chains, IEICE Transactions 

Fundamental, 83(1)(2000). 

[11] Nareli Cruz-Cortés, Francisco Rodriguez-Henriquez, RaúlJuárez-

Morales and Carlos A Coello- Coello, Finding Optimal Addition 

Chains Using a Genetic Algorithm Approach, Springer- Verlag, 

(2005) 208-215. 

[12] N Cruz-Cortes, F Rodriguez-Henriquez, and C A Coello-Coello, 

An Artificial Immune System Heuristic for Generating Short 

Addition Chains, IEEE Transactions on Evolutionary Computation, 

6(2005)  252–280. 

[13] Raveen R Goundar, Ken-ichiShiota, M Toyonaga,New Strategy for 

Doubling - Free Short Addition-Subtraction Chain, 

Mathematics,2008. 

[14] AlejandroLe´on-Javier,NareliCruz-Cort´es,MarcoAMoreno-

Armend´ariz,andSandraOrantes- Jim´enez, Finding Minimal 

Addition Chains with a Particle Swarm Optimization Algorithm, 

Advances in Artificial Intelligence, Springer, (2009) 680-691. 

[15] Swagatam Das, ArijitBiswas, Sambarta Dasgupta, and Ajith 

Abraham, “Bacterial Foraging Optimization Algorithm: 

Theoretical Foundations, Analysis, and Applications”, Foundations 

of Computational Intelligence, Springerlink.com, Springer-Verlag 

Berlin Heidelberg, 3SCI 203(2009) 23–55. 

[16] Mohamed M Abd-Eldayem, EhabT Alnfrawy, and AlyA Fahmya, 

Addition-Subtraction Chain for 160-bit Integers by using 2’s 

Complex N Cruz-Cortés, F Rodríguez-Henríquez,and C A Coello-

Coello, Addition Chain Length Minimization With Evolutionary 

Programming, Proceedings of Genetic and Evolutionary 

Computation Conference (GECCO) ACM digital Library, (2011). 

R Opt. AIS GA EP BFOA 

[1,512] 4924 4924(+) 4924 4924 4924 

[1,1000] 10808 10813(+) 10813 10808 10812 

[1.1024] 11115 11120(+) - 11115 11119 

https://www.tandfonline.com/author/Tsai%2C%2BYH
https://www.tandfonline.com/author/Chin%2C%2BYH
https://www.semanticscholar.org/author/Raveen-R.-Goundar/2696467
https://www.semanticscholar.org/author/Ken-ichi-Shiota/52410699
https://www.semanticscholar.org/author/M.-Toyonaga/145629889


Dr.K.Mani & A. Mullai. / IJETT, 69(2), 32-38, 2021 

 

38 

[17] S Domínguez-Isidro and E Mezura-Montes, An Evolutionary 

Programming Algorithm to Find 

MinimalAdditionChains,ICongresoInternacionaldeIngenieríaElectr

ónica,Instrumentación y Computación, de Juniodel, Minatitlán 

Veracruz, México,2011. 

[18] Maurice Mignotte, A Note on Addition Chains, International 

Journal of Algebra, 5(6)( 2011). 

[19] Neill Michael Clift, Calculating Optimal Addition Chains”, Journal 

of Computing, Springer, 91 (2011) 265–284. 

[20] Arturo Rodriguez-Cristerna and Jose Torres-Jimenez, A Genetic 

Algorithm for the Problem of Minimal Brauer Chains for Large 

Exponents, Soft Computing Applications in Optimization, Control, 

and Recognition, Springer, (2013) 27-5. 

[21] K. Mani, Generation of Addition Chain using Deterministic 

Division Based Method, International Journal of Computer Science 

& Engineering Technology, 4(05) (2013) 553- 560. 

[22] Om PrakashVerma, Rashmi Jain, and Vindhya Chhabra, Solution of 

Travelling Salesman Problem Using Bacteria Foraging 

Optimization Algorithm, International Journal of Swarm 

Intelligence, Inderscience publisher, 1(2) (2014). 

[23] BrianKoziel, Reza Azarderakhsh, David Jaoand Mehran Mozaari-

Kermani, On Fast Calculation of Addition Chains for Isogeny - 

Based Cryptography, Inscrypt 2016, IACR Cryptology, 2016. 

[24] Adamu Muhammad Noma, Abdullah Muhammed, Mohamad 

Afendee Mohamed, and Zuriati Ahmad Zulkarnain. A Review on 

Heuristics for Addition Chain Problem: Towards Efficient Public-

Key Cryptosystem, Journal of Computer Science, 13(2017) 275-

289. 

[25] K Mani, M Viswambari, A New Method of Generating Optimal 

Addition Chain Based on Graph, International Journal of 

Mathematical Sciences and Computing, 2(2017) 37-54. 

[26] P Anuradha Kameswari and B Ravitheja, Addition Chain For Lucas 

Sequences With Fast Computation Method, International Journal of 

Applied Engineering Research, 13(11) (2018) 9413–9419. 

[27] Stjepan Picek, Carlos A CoelloCoello, Domagoj Jakobovic and 

Nele Mentens, Finding Short And Implementation - Friendly 

Addition Chains With Evolutionary Algorithms, Journal of 

Heuristics, 24 (2018)  457-481. 

[28] Aaron Hutchinson and Koray Karabina, Constructing 

Multidimensional Differential Addition Chains and Their 

Applications, Springer, Journal of Cryptographic Engineering, 

9(2019) 1- 19. 

[29] Dustin Moody and Amadou Tall, On Addition-Subtraction Chains 

of Numbers With Low Hamming Weight”, Number Theory 

Mathematics, 25(2019) 155-168. 

[30] Hazem M. Bahig, and Yasser Kotb, An Efficient Multicore 

Algorithm for Minimal Length Addition Chains, Computers, 

MDBI, 8(2019). 

[31] A Mullai and K Mani, Enhancing The Security In RSA and Elliptic 

Curve Cryptography Based on Addition Chain Using Simplified 

Swarm Optimization and Particle Swarm Optimization For Mobile 

Devices, International Journal of Information Technology, 

Springer, (2020). 

[32] Narendra Mohan  Lifetime Enhancement of Sensor Nodes Based 

On Optimized Sink Node Placement Approach, International 

Journal of Engineering Trends and Technology 68.10(2020):10-23.

 

 

https://link.springer.com/book/10.1007/978-3-642-35323-9
https://link.springer.com/book/10.1007/978-3-642-35323-9
https://link.springer.com/book/10.1007/978-3-642-35323-9
https://link.springer.com/journal/13389
https://sciprofiles.com/profile/author/SkpycjFPL2Mxd1BTdTdDcTd5Qldmc2ozZ2NYZkg3WW5QQ0d4b1owdHozbz0%3D
https://sciprofiles.com/profile/587237

	Abstract
	I. INTRODUCTION
	II. RELATED WORK
	III. THEORETICAL BACKGROUND
	Definition 3.1 (Addition Chain)
	Definition 3.2 (Optimal Addition Chain)
	A. Search Space
	B. Chemotaxis
	a) Minimum Intermediate Number in AC
	C. Reproduction and Dispersal Step
	V. BFOA_AC – AN EXAMPLE


	VI. IMPLEMENTATION
	BFOA based AC has been thought of and it is implemented successfully. In this paper, ACs produced by some integers are proved both theoretically and experimentally. From the experimental results, up to integers 1024, the proposed BFOA algorithm produc...
	REFERENCES


