
International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 7 - July 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 8

EPiT : A Software Testing Tool for

Generation of Test Cases Automatically

Rosziati Ibrahim
#1

, Ammar Aminuddin Bani Amin
#2

, Sapiee Jamel
##3

, Jahari Abdul Wahab
*4

#
Department of Software Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Malaysia

##
Department of Information Security,, Universiti Tun Hussein Onn Malaysia, 86400, Malaysia

*
Engineering R&D Department, Sena Traffic Systems Sdn. Bhd., Kuala Lumpur, 57000, Malaysia

Abstract — Software test cases can be defined as a

set of condition where a tester needs to test and

determine that the System Under Test (SUT) satisfied

with the expected result correctly. This paper

discusses the optimization technique in generating

cases automatically by using EpiT (Eclipse Plug-in

Tool). EpiT is developed to optimize the generation of

test cases from source code in order to reduce time

used for conventional manually creating test cases.

By using code smell functionality, EpiT helps to

generate test cases automatically from Java

programs by checking its line of code (LOC). The

implementation of EpiT will also be presented based

on several case studies conducted to show the

optimization of the test cases generated. Based on the

results presented, EpiT is proven to solve the problem

for software tester to generate test case manually and

check the optimization from the source code using

code smell technique.

Keywords — Software Testing, Test Cases, Code

Smell, Source Code, System Optimization, Line of

Code;

I. INTRODUCTION

There are many techniques for a software tester to

conduct a SUT within testing phase. Typically, a

software tester manually generates the test cases and

testing each of the module. This technique however

may take longer time where most of the activity of

generating test cases are prone to redundancy [1].

Moreover, a software tester needs to be precisely

validate the test cases well in order to avoid

ambiguity presented in Software Test Plan

documentation. In a nut shell, automation tool helps

to increase the reliability of system while reducing

the cost of manual software testing [2 - 4].

To solve the problem of manually generating test

cases, EpiT can be used as a software testing tool

where test cases can be automatically generated from

the source code. By using the code smell

functionality, the tool can generate test cases by

examining line by line of the source codes. Thus,

EpiT optimization will help to find and provide high

quality solutions.
This paper discusses the optimization technique

using code smell algorithm in order to reduce the
generation of test cases due to redundancy of test

cases as well as an approach to automate the process
of generating the test cases. The rest of the paper is
organized as follows. It consists of 7 Sections. Related
works are discussed in Section 2 and Section 3 discuss
the application involved. Meanwhile, Section 4
demonstrates the framework of EpiT. Section 5
provides the implementation of EpiT tool using code
smell to generate test cases from source code. Section
6 shows the results after the implementation phase
and conclusion is in Section 7.

II. RELATED WORK

 Research paper of Albert [5] presents jPET which
is a white-box test-case generator (TCG). jPET is a
software testing tool build on Eclipse environment
which automatically generate test-cases from the
bytecode compiled from the java class. In order to
yield this information to the user at the source code
level, jPET performs reverse engineering of the test-
cases obtained at the bytecode level by PET. By using
jPET as integrated Eclipse programming, software
developers can directly conduct testing activities in
development phase.

 In the study by Zhenzhen Wang, and Qiaolian Liu
[6] discuss an improved Particle Swarm Optimization
(PSO) algorithm to generate test case automatically.
This study evaluated several techniques such as PSO
and Genetic algorithm to determine perfomance in
term of generating test cases. Based on the result,
shows that the improved PSO is effectively reduce run
time in generating software test cases automatically
compare to conventional PSO.

 The study by Hanyu Pei et al. [7] proposed a
cloud-based Dynamic Random Test (DRT) technique
for handling the evaluation of test case prioritization
and resource allocation. This study also evaluated
several techniques between the cloud-DRT and other
techniques such as Round Robin Schedule (RRS) and
cloud-based Random Partition Testing (RPT). All
these experiments of evaluation were conducted to
find fault detection effectiveness. Based on the result,
it was concluded that the proposed technique uses less
test cases to detect all seeded faults compared to RRS
and cloud-based RPT. AMOGA [8] is another study
for software testing. AMOGA is used as a framework
in generating test cases from GUI for mobile
applications.

Yunqi Du et al. [9] proposed a hybrid techniques
which merging a mutation testing technique with

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 7 - July 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 9

genetic algorithm. These combination technique will
be able to design test case optimization methods. The
method helps in producing the test cases generation.
Based on the results, they are able to show their
combination technique have better score in term of an
average variation score of more than 95% on the
variants of the complete set. Thus, this study proved
that using mutation testing combine with genetic
algorithm leads to higher coverage and mutation score
within test cases.

Based on study by Annibale Panichella et al. [10]
conducted on 346 Java classes to assess the
performance of DynaMOSA compared with whole-
suite approach (WS), its archive-based variant (WSA)
and Many-Objective Sorting Algorithm (MOSA). By
Using DynaMOSA technique, test case can be
generated and maximize test coverage in SUT. Based
on the experimental result, it shows that DynaMOSA
improved 8 percent in average coverage compared to
MOSA technique. Table 1 shows the summary of the
related works discussed.

TABLE I: SUMMARY OF RELATED WORK

No Authors &
Year

Techniques Outcome

1 Elvira Albert,

(2011) [5]

jPET: an

Automatic Test-
Case Generator

Plugin

Fully integrated

test case generation
within the software

development
process.

2 Zhenzhen

Wang,
Qiaolian Liu

(2018) [6]

Particle Swarm

Optimization

(PSO) algorithm

The technique

proved that is
better compared to

conventional PSO.

3 Hanyu Pei et

al.

(2018) [7]

Dynamic

Random Testing

Strategy (DRT)

The technique

proposed more

effective in

generating test

cases compared to

RPT and RRS.

4 Salihu et al.

(2018) [8]

AMOGA AMOGA is used as

a framework for

testing mobile

applications by

using GUI

5 Yunqi Du et
al.

(2019) [9]

Hyrbid

Technique

merging

Mutation Testing

Techniques with

Genetic

Algorithm

The hybrid

techniques leads to

better coverage and

better mutation

score in generating

test cases.

6 Annibale
Panichella et

al.

(2018) [10]

Dynamic Many-

Objective

Sorting

Algorithm

(DynaMOSA),

The technique

proved to more

high coverage in

test case generation

compared with

MOSA.

III. EPIT FRAMEWORK

 In this section, the framework of EpiT is clearly
defined to demonstrate how the generation of test
cases are derived. Fig. 1 shows the framework for
EPiT. Source code is the input for EPiT. Then, the
parser will be used to read line by line of the source
codes. EPiT will detect classes with code smell and
then generate test cases automatically based on
detected methods.

Fig. 1: The Framework of EPiT

 Based from Fig. 1, a software tester can generate
the test cases using EpiT in Eclipse Integrated
Development Environment (IDE). Eclipse IDE is
always been used to develop wide scope of
application because of open source license. However,
the development of EpiT for source code is currently
limited to Java programming only. The details
discussion for the framework has been discussed in
[11].

IV. THE CASE STUDIES

In this paper, several applications were

implemented in order to test the Epit framework. All

four of the applications were selected and

downloaded from open source community Github.

The first application is the calendar application

[12] which are used to view yearly and monthly

calendar given input from user. Additionally, this

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 7 - July 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 10

application also calculates age where the application

count the duration from birth of date to current year.

Secondly, the BlackJack application [13] is a card

game where each player will dealt a card until a

certain point. Player who get the highest hand win the

round. The application consists of seven classes in

total.

Thirdly, the CoffeeMaker application [14] is an

inventory system for making a coffee. A user can add,

edit or delete each coffee recipe to the inventory.

Moreover, user can view all the listed recipes in the

inventory. This application consists of four classes in

total.

Lastly, the Elevator application [15] is an elevator

system where allocate elevator cart to assign floor.

Many functions were embed in the application such

as the elevator cart will repositioned itself to the

lowest floor when in idle state. This application also

check sequence queue and sorted which floor should

be stop first.

V. IMPLEMENTATION OF EPIT TOOL

Base from the framework of EPiT in Fig. 1, the

tool is implemented according to four steps. These

steps are discussed in this section.

A. Step 1: Source Code

Example of calendar case study using source code

is shown in Fig. 2. The application consists of two

methods in Java programming. Firstly, the project

will be imported in Eclipse environment. Then the

codes will be analyzed by EpiT by using the menu as

shown in Fig. 3.

B. Step 2: Schema Parser

By default, EpiT will read line by line according to

the algorithm. Epit uses Java parser to get an Abstract

Syntax Tree (AST). Based on Fig. 4, example of the

AST code where is a structure representing Java

programming in a way that it is easy to check and

validate.

C. Detect Classes with Code Smell

Epit will start to analyze and detect all the classes

in the source using code smell functionality [16]. The

parser will detect the class by node. Then within each

of the node, EpiT identifies as method which has

several other attributes such as method name, return

type and input parameter. All the method classes

detected will be stored in variable in EpiT. Fig. 5

shows example of code smell functionality in EpiT.

D. Generate Test Cases

Then, test cases are generated based on the

attributes that have been identify within the code

smell functionality. Each of the test cases will have at

least three possible scenario such as valid input,

invalid input and null input. Example is shown in Fig.

6 where each of the test cases will be generated with

multiple scenario.

Fig. 2: Source Codes for Calender

Fig. 3: EPiT Analyzer

Fig. 4: AST Code

After EPiT has finished analyzed all the source

code, it will prompt the success popup. Fig. 7 shows

example of the popup with time duration taken on

each process.

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 7 - July 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 11

Fig. 5: Code Smell in EPiT

Fig. 6: Generation of Test Cases

Fig. 7: Success Dialog Box in EPiT

Next, during analyzing the source codes, EPiT

will output all details in the EpiT console. The

console will show many attributes such as time and

date of the conducted process, name of the project,

and details each of test cases generated. Fig. 8 shows

that the EpiT console of each of analyzed process.

Finally, EPiT will summarize all the analyzed

source code and generated test cases in the EpiT

console. The console will show project name, total

generated test cases, duration of each process

conducted. Fig. 9 shows that the EpiT summarization

of each of successful process.

Fig. 8: The Console for EPiT

Fig. 9: Summary of EPiT Analyzer

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 7 - July 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 12

VI. RESULTS AND DISCUSSIONS

 Based on Table II, comparison result between
each of case study is shown. The result shows that the
calendar application is the fastest with 82ms and
generated fifteen test cases. Meanwhile, the slowest is
the coffee maker application which is 206ms with
fifty seven test cases were generated.

 The comparison had been led by considering one
perspective. The differences of each application by
duration time to generate test cases. From fastest time
which is 81ms and the slowest time which is 206ms.

 There are many factors which lead to inconsistent
result which are project code complexity, CPU usage
and memory usage. Although the result is not
consistent, this project had proven that EpiT is faster
than conventional manually generated test cases.
Thus, those studies support the result of this project.

TABLE II: RESULTS OF CASE STUDIES

Application
Total

LOC

Test Cases

Generated

Duration

Time (ms)

Calendar
374 15 82

BlackJack
1017 41 163

CoffeeMaker
982 57 206

Elevator
1183 66 149

VII. CONCLUSIONS

This paper has discussed the works of the

generating test cases using EpiT in Eclipse

environment. Through the experiment, this research

verified that EpiT is more reliable and faster response

time compared to conventional manual testing

technique. By analyzing the result, test cases can be

optimized and help software tester to remove any

redundancy in the source code. Based on the results,

it is proven that using code smell functionality is a

very efficient way to automatically generate test

cases from source code. Other techniques for

software testing can also be investigated and

implemented such as mutation software testing

technique, regression software testing technique and

fuzzy software testing technique.

ACKNOWLEDGMENT

The authors would like to thanks Ministry of

Education (MOE) for supporting this study under

Prototype Research Grant (PRGS) Vote No K037.

REFERENCES

[1] Ibaraki, S., Tsujimoto, S., Nagai, Y., Sakai, Y, Morimoto, S.,
Miyazaki, Y. (2018). “A pyramid-shaped machining test to

identify rotary axis error motions on five-axis machine tools:
software development and a case study”, International
Journal of Advanced Manufacturing Technology, 94(1-4):
227-237, DOI: 10.1007/s00170-017-0906-9

[2] Janczarek, P. and Sosnowski, J. (2015). “Investigating
software testing and maintenance reports: Case study”,
Information and Software Technology, 58: 272-288, DOI:
10.1016/j.infsof.2014.06.015

[3] Chen, J., Zhu, J., Chen, T.Y., Towey, D., Kuo, F.C., Huang,
R., Guo, Y. (2018). “Test case prioritization for object-
oriented software: An adaptive random sequence approach
based on clustering”, Journal of Systems and Software, 135:
107-125, DOI: 10.1016/j.jss.2017.09.031

[4] Chen, T.-H.,Thomas, S.W.,Hemmati, H., Nagappan, M.,
Hassan, A.E. (2017). “An Empirical Study on the Effect of
Testing on Code Quality Using Topic Models: A Case Study
on Software Development Systems”, IEEE Transactions on
Reliability, 66(3): 806-824, DOI: 10.1109/TR.2017.2699938

[5] Albert, E. (2011). “jPET: an Automatic Test-Case Generator
for Java”. 18th Working Conference on Reverse Engineering,
441-442.

[6] Wang,Z., Liu,Q. (2018). “A Software Test Case Automatic
Generation Technology Based on the Modified Particle
Swarm Optimization Algorithm”. International Conference on
Virtual Reality and Intelligent Systems (ICVRIS). Retrieved
November 20, 2019, from:
https://ieeexplore.ieee.org/document/8531372

[7] Pei,H., Yin,B., Xie, M. (2018). “Dynamic Random Testing
Strategy for Test Case Optimization in Cloud Environment.”
IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW). Retrieved November 20,
2019, from: https://ieeexplore.ieee.org/document/8539185

[8] Salihu, I.A., Ibrahim, R., Ahmed, B.S., Zamli, K.Z. Usman,
A. (2019). “AMOGA: A Static-Dynamic Model Generation

Strategy for Mobile Apps Testing”. IEEE Access. 2019.

DOI:10.1109/ACCESS.2019.2895504
[9] Du,Y., Ao, H., Fan, Y., Pan, Y., O.Alex. (2019). “Automatic

Test Case Generation and Optimization Based on Mutation
Testing.” IEEE 19th International Conference on Software
Quality, Reliability and Security Companion (QRS-C).
Retrieved December 1, 2019, from:
https://ieeexplore.ieee.org/document/8859495

[10] Panichella, A., Kifetew, F. M., and Tonella, P. (2018).
“Automated Test Case Generation as a Many-Objective
Optimization Problem with Dynamic Selection of the Target”.
IEEE Transactions on Software Engineering, Volume: 44,
Issue: 2, Feb. 1 2018. Retrieved December 1, 2019, from:
https://ieeexplore.ieee.org/document/7840029

[11] Ibrahim, R., Ahmed, M., Jamel, S. (2019). “An Eclipse Plug-
in Tool for Generating Test Cases from Source Codes”.
Proceedings of the 2019 Asia Pacific Information Technology
Conference. DOI: 10.1145/3314527.3314535

[12] Xechnologi, (2019).“Calendar Project.” Retrieved December
1, 2019, from: https://github.com/xechnologi/my-repo

[13] Brown,J., (2015). BlackJack. Retrieved December 1, 2019,
from: https://github.com/jbbrown93/BlackJack

[14] Behrens, A. (2014). “Coffee Maker”. Retrieved December 1,
2019, from: https://github.com/serious6/CoffeMaker

[15] Strang, T., Bauer, C. (2017). Elevator Scheduling Simulator.
Retrieved December 1, 2019 from:
https://github.com/00111000/Elevator-Scheduling-Simulator

[16] Ibrahim, R., Ahmed, M., Nayak, R., Jamel, S. (2018).
“Reducing redundancy of test cases generation using code
smell detection and refactoring”. Journal of King Saud
University. DOI: 10.1016/j.jksuci.2018.06.005

http://www.ijettjournal.org/

