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Abstract - This paper employs a nine-degree-of-freedom dynamic model, considering torsional and lateral motions, to analyse 

the dynamic characteristics of a two-stage spur gear system. The model incorporates gear eccentricity faults and dynamic 

transmission errors by establishing a mesh stiffness model. The differential vibration equations for the spur gear system are 

derived using the Lagrangian method. Numerical simulations are conducted using a combination of the Short-Term Fourier 

Transform (STFT), 3D Waterfall FFT (Fast Fourier Transform), and RPM-frequency mapping technique under various 

operating scenarios. Analysing the responses imposed by the system under both regular and chaotic vibrations reveals that gear 

eccentricity faults significantly impact the system's performance. The frequency content changes over time and 3D plots provide 

a more detailed frequency-RPM representation, allowing the detection of transient faults in gears compared to the time domain 

and frequency domain. Theoretical analysis confirms the effectiveness of the STFT and 3D Waterfall FFT-based frequency-RPM 

transmission error detection approach. 

Keywords - Eccentricity fault, Gear mesh stiffness, RPM-Frequency map – STFT, 3D Waterfall FFT, Transmission error, Two-

stage spur gear system. 

1. Introduction  
In industry, mechanical gearboxes drive rotating 

machinery such as robots, aircraft engines, manufacturing 

equipment, and wind turbines. Vibrations generated by its 

operation change the machine's behaviour and speed up the 

wear of specific mechanical components such as gear teeth, 

bearings and others. These signals may change due to a 

vibrating structure modification at the defect formation time 

[1]. For this, many studies focus on torsional vibration 

analysis or lateral torsion by developing numerical models of 

gear dynamics.  A high-precision gear transmission system 

can be challenging to produce and assemble. One common 

issue in gear systems is gear eccentricity, caused by 

manufacturing and making errors. In wind power, eccentricity 

can cause transmission errors of up to 10%, reducing the 

transmission ratio. In high-precision robotic systems, a slight 

deviation can lead to high energy consumption and 

positioning errors. This can lead to complex modulations and 

dynamic excitations, ultimately degrading the gear system's 

dynamic performance [2]. The primary cause of significant 

variations in Transmission Error (TE) and fluctuating 

backlash in gear transmission is eccentricity error. 

Manufacturing and assembly processes can introduce 

eccentricity errors, leading to periodic fluctuations in TE and 

backlash. This degradation in transmission precision and 

backlash adjustment accuracy underscores the importance of 

studying gear eccentricity errors. Understanding and 

addressing these errors are crucial for improving transmission 

precision and maximizing backlash compensation or 

correction. The effects of mounting defects, such as 

misalignment eccentricity and shape abnormalities, on gear 

dynamics were examined by Velex and Maatar [3], who 

developed a new lumped parameter model to clarify the 

drawbacks of eccentricity. Wang et al. [4] used a dynamic 

Finite Element Model (FEM) to study the interaction between 

tooth eccentricity, backlash and transmission error in two-

stage gear systems.  Researchers have identified and 

developed methods to detect and diagnose faults by examining 

the vibration signals produced during meshing. Parey and 

Tandon [5] and Rigaud [6] have developed a dynamic 

modelling approach based on discretization using finite 

elements for all elastic transmission components, including 

gears, shafts, bearings, and casing. Saxena, Parey, and 

Chouksey [7] considered sliding friction in their study to 

provide an analytical approach for determining the Time-

Varying Meshing Stiffness (TVMS) of spur gears for different 

spall forms, sizes, and positions. Building on previous 

research on the dynamic analysis of gear transmission systems 

affected by gear eccentricities, a dynamic model for a 

cylindrical gear rotor system was developed by Yu et al. [8], 
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considering a local tooth profile error as well as a global 

assembly error. This model integrates a Finite Element (FE)-

based model for the shaft structure, a lumped parameter 

bearing model, and a 3D gear model. Aijun et al. [9] 

investigated a multi-stage planetary transmission system's 

mathematical model to study gears' dynamic response affected 

by profile defects and assembly errors, which subsequently 

caused crack-like failures.  

Time-series imaging and FFT spectrum methods were 

used to analyze the dynamic response. Yifan et al. and Wang 

et al. references [10-11] proposed a time-frequency imaging 

method that includes several oscillatory components with 

time-varying amplitude and frequency to diagnose gear faults 

under varying speeds. Although many studies have been 

conducted on gear dynamics, only a few studies have 

comprehensively investigated the influence of eccentricity on 

coupling stiffness and nonlinear oscillatory responses using 

time-frequency methods such as STFT and RPM frequency 

methods. Time-frequency analysis to simultaneously 

decompose signals in both time and frequency and prioritise 

between resolutions to capture transient responses.  

Therefore, it is crucial to establish appropriate analyses 

and methodologies for problem detection to investigate the 

mechanisms of fault diagnosis. The primary objective of this 

study is to examine the effects of gear eccentricity on the 

meshing stiffness and dynamic behaviour of a two-stage spur 

gear system. A dynamic model was implemented to achieve 

this goal, considering stiffness and error excitations. The 

research focuses on the effect of eccentricity factors on the 

variable stiffness of the network and their impact on the 

dynamic properties of the system, especially when studying 

anomalies in weathering and spur gears. This study uniquely 

uses a nine-degree-of-freedom dynamic model, including 

eccentricity error and time-frequency analysis (combines 

STFT, 3D Waterfall FFT and RPM map) to identify anomalies 

accurately. The STFT, 3D waterfall FFT and frequency-RPM 

mapping methods are implemented to facilitate the detection 

and diagnosis of eccentricity irregularities. The state 

eccentricity of the system under study allows the development 

of analytical methods dedicated explicitly to this 

configuration.  

The influence of gear eccentricity on the lateral, torsional, 

and TE dynamic responses is studied in various scenarios.  In 

this paper, Section 2 provides a comprehensive description of 

the selected two-stage spur gear. In Section 3, the analysis 

considers the detection of gear eccentricity by examining its 

effects on the mesh stiffness. Section 4 presents the governing 

equation for the mathematical dynamic modelling of a double-

stage spur gear system. Section 5 analyses the eccentricity 

impact on the two-stage gear system vibration characteristics 

at 0 mm, 50 mm, and 100 mm. Section 6 draws a comparative 

discussion between the time-frequency analysis techniques 

and traditional analysis used in previous research. Finally, 

conclusions are drawn in Section 7. 

2. Spur Gear System Model 
Figure 1 shows a two-stage oscillating gear modelled 

without initial impact or friction. The gear transmission 

mechanisms are modelled as rigid rollers with friction 

stiffness that simulate the gears' elastic behaviour, assuming 

full contact efficiency between the pinion and gear. 

 
Fig. 1 Dynamic model of a gear system with two stages 
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3. Meshing Stiffness Model of a Spur Gear 
The method for calculating mesh stiffness is derived from 

the potential energy approach initially proposed by Yang and 

Lin [12] and subsequently enhanced by Tian [13] and Sainsot 

et al. [14].  

The evaluation of the gear system is carried out through 

the use of mesh stiffness, which is associated with two 

developing gear profiles with faultless accuracy, as illustrated 

in Figure 2. Two gears in the mesh are visible in Figure 2, 

where 2 × bt is indicated. In this Figure, bt stands for the tooth 

face width of one gear tooth. In the mesh, the gears are 

depicted as a pair that transfers torque and motion from one to 

the other. 

Fig. 2 Two involute gear profiles 

In Figure 3, the involute of a circle is defined as the curve 

traced by a point N on a defect-free base circle as it rolls along 

a straight line. The curve is generated as point N moves away 

from the circle while keeping a taut, rigid line under constant 

tension. The length of the unwound line at any moment equals 

the distance from point N to the base circle. 

 
Fig. 3 The root circle of a spur gear tooth beam model exceeds the size 

of the base circle 

Using the beam theory, Hertzian, bending, shear, and axial 

compression energies in a gear tooth can be illustrated as 

follows: 
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Bending, shear and axial compression stiffness in the 

direction of the force 𝐹 is denoted by 𝑘𝑏 , 𝑘𝑠 and 𝑘𝑎 , and 

respectively. As demonstrated in Figure 3, the action force F 

can be decomposed into two perpendicular forces: the axial 

force Fb and the bending force Fa. They are stated as follows: 

a 1

b 1

F = Fsinα

F = Fcosα



  (2) 

Equation (3) uses the following expression to get the tooth 

x's profile, which is described by its involute geometry 

(becomes the integration variable instead of x). 

( )b b 2 b 2 r 3
x = R cosα-R α -α sinα-R cosα -R cosα

(3) 

Its derivative is obtained as follows: 

( )b 2dx = R α-α cosα dα
 (4)  

The shear modulus G, moment of inertia of the tooth's 

surface Ix, couple M, and section area Ax are expressed as 

given in Equation (5) and subsequently replaced into Uh, Ub, 

Ua, and Us formulas, respectively, based on the geometry of 

the involute tooth in Figure. 3. 
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L represents the tooth width, E denotes Young's modulus 

and Poisson's ratio. 2 represents the half-tooth angle on the 

fundamental circle, 3 illustrates the approximate half-tooth 

angle on the root circle and symbolizes the angular movement. 
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Following the replacement of all the expressions of equation 

(5) by those of equation (1) and taking into account that the 

root circle (Rr) is greater than the base circle (Rb), also known 

as the dedendum circle, it can be expressed the equations 

relating to the stiffness according to Hertz, the bending, axial 

and shear of the tooth in its optimal state as shown in Figure 

2: 
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The total potential energy U stored in the meshing gear 

system includes the Hertz energy Uh, the bending energy Ub, 

the axial compression energy Ua and the shear energy Us. It 

can be expressed using the following equation: 

2 2 1 1 1 1

2 2
t h b s a

m h b s a

F F
U U U U U

k k k k k
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= = + + + = + + + 
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Considering the first phase of the pinion gear mechanism, 

influenced by the eccentricity error, the stiffnesses 

corresponding to the Hertz effect, bending, shear and axial 

compression vary accordingly to kh, kb1, ks1, and ka1 in 

sequences. Thus, the expression for the total effective mesh 

stiffness for a double-stage spur gear is: 
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 (8) 
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4. Fault Two-Stage Gear System with 

Eccentricity Fault 
The torque of an electric motor Tin drives the gear unit 

through coupling 1, whose parameters are related to the 

torsional stiffness and the damping coefficient. The system 

loads the movement through an output coupling consisting of 

the following components: kg for the torsional stiffness and cg 

for the damping coefficient, applying a resistance torque (Tout) 

to the output shaft, i.e. shaft 2. The 09-DOF is used to model 

the two-stage gear. Studying the dynamics of two-stage gear 

systems with eccentricity faults is crucial for understanding 

their behavior and performance under such conditions. Table 

1 lists the specifications of the two-stage gear system.  

 
Fig. 4 Schematic representation of a two-stage gear system 
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Table 1. The two-stage gear under study physical characteristics 

Specifications Stage 1 Stage 2 

Young Module (E) 2068×1012 Pa 2068×1012 Pa 

Number of teeth Z1 = 30 & Z2 = 90 Z3 = 30 & Z4 = 90 

Poisson’s ratio 3×10-1 3×10-1 

Angle of Pressure 20 degrees 20 degrees 

Pinion / Gear base circle radius  (mm) R1 = 30.1 & R2 = 76.1 R3 = 30.1 & R4  = 76.1 

Mass (kg) M1 =0.96 & M2 = 2.88 M3 = 0.96 & M4 = 2.88 

Bearings meshing stiffness (Ns/m) k1 = k3 = 656×108 k2 = k4 = 656×108 

Bearings damping coefficient (Ns/m) c1 = c2 = 18×106 c3 = c4 =18×106 

Coupling torsional stiffness (Ns/m) kp = 44×105 kg = 44×105 

Coupling damping coefficient (Nms/rad) cp = 5×105 cg = 5×105 

 
Fig. 5 Gear system with two-stage with eccentricity fault 

In Figure 5, since the centre of the pinion pitch circle is 

not situated on the axis of rotation of the corresponding pinion, 

this leads to an eccentricity defect that provokes a 

transmission error. The transmission error δ(t) is the overall 

elastic deformation of the teeth at the point of contact of a pair 

of gears.  

4.1. Vibration Differential Equations Derivation 

Along the line of action is the actual deformation (relative 

displacement), denoted as δ. Relative displacement along the 

pressure line of the gear meshing in stages 1 and 2 can be 

expressed as follows: 

( ) ( )1 1 2 1 1 1 2 2 ecc1 1 1 1δ = - y cos + R θ - R θ + e sin( - ) + e (t) ,t y   
(10) 

( ) ( ) -2 2 3 2 3 3 4 4 2δ = - y cos + R θ R θ + e (t) ,t y 
(11) 

1

1 1

1

1 1

1

1

1 :
= ,

1 :

n
Counterclockwise

n
Clockwise

  


  

 
 
 

 
 
 

+ + −


+ − (12) 

With the subscript n denoting the order of gear mesh (n = 

1, 2). Here, it is only considered the most common case φ1 = 

0. The standard deviation e1(t) of a pinion eccentricity and 

total angular displacement of a pinion 1 is expressed as 

follows: 

1 1 1 1e (t) = e sin(z t + α ) ,amp 
 (13) 

1 1 1= t + ,  
 (14) 

Where eamp is the amplitude of the static transmission 

error, 1 is the initial phase angle of the pinion, 1 is the 

pinion's torsional displacement, and 1 is the angular velocity 

of the shaft/pinion. The equation of vibration behavior of a 

two-stage gearbox can be formulated using dynamic modeling 

that considers both transverse and torsional vibrations.  

According to the Rayleigh energy approach, the study has 

proven that the transfer of mechanical energy through the gear 
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teeth is closely associated with two key factors: kinetic energy, 

associated with the displacements of rotating and linearly 

moving masses, and potential energy, which mainly arises 

from the elastic deformations of the teeth when they contact.  

The configuration of the gearbox has a significant effect 

on both types of energy, thereby determining the overall 

dynamic response of the system. 

4.1.1. Kinetic Expression of Energy 

By adding the energy of each element of the system, we 

arrive at the following expression for determining the kinetic 

energy (T) of the system: 

2 2 2 2 2
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1 and 3 are the designations of the motor gear, while 2 

and 4 refer to the driven gear. 

4.1.2. Expression of a Potential Function 

The total potential energy U of the system is calculated 

by adding the energy of each element of the system as follows: 
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4.1.3. Expression of Rayleigh Dissipation Function 

The Rayleigh dissipation function (D) for a two-speed 

transfer using various linear viscous dampers is expressed as: 
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 (17)      

4.2. Governing Equations of Gear System 

The motions shown in Figure 4 are defined by nine 

equations, each associated with a degree of freedom.  

For the application of Lagrange's formula, the governing 

equation is: 
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By calculating based on equations (14), (15) and (16), the 

equations of the gear system motion in matrix form are 

obtained as follows. 
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Where Ft1 and Ft2 are the dynamic meshing forces of gear 

pair 1, affected by the eccentricity fault on the meshing points, 

is compared to gear pair 2 in perfect condition: 
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T1, T2, T3, and T4 are the torques developed due to the 

gear meshing forces at stages 1 and 2. FT and FC, representing 

the tangential and centrifugal forces of a gear pair at stage 1 

induced by gear eccentricity [28], can be calculated as follows: 

1 1 1TF M e=  (22) 

2

1 1 1( )C eccF M e  = +
 (23) 

5. Results  
This research combines multi-degree-of-freedom 

dynamic models with advanced time-frequency analysis 

techniques to study gear eccentricity, representing a 

significant innovation.  

This study highlights the improvement in transient fault 

detection compared to traditional FFT methods and provides 

a new display of how drive shaft stiffness changes with 

eccentricity, which is still relatively understudied in the 

current literature. 

5.1. Gearbox Vibration Simulation Results 

The specified gearbox system is analyzed by considering 

the assumptions in Table 1. The simulation will use an RPM-

frequency map, a 3D FFT waterfall, and an STFT diagnostic 

technique to accurately identify the features of coupled 

failures in a spur gear system.  

The Runge-Kutta discretization method and a MATLAB 

solver with the ode45 subroutine are used to solve the 

equations. At this early stage of the trial, each level of 

eccentricity has been deemed consequential. Each analysis 

was simulated for ten seconds. 

Figure 6 shows that the system produces a regular, nearly 

sinusoidal oscillation. A stable amplitude and high frequency 

indicate a source of regular, cyclical vibrations, characteristic 

of a steady-state rolling phenomenon and a harmonic 

imbalance associated with rotation.  

This likely indicates stationary behavior when the device 

operates at a constant speed. However, Figure 7 shows that the 

Fourier spectrum indicates that the signal in the time domain 

is dominated by a single central frequency, proving the 

observed phenomenon's almost single-frequency nature.  

The sharp, pronounced peak at 620 Hz indicates a stable 

mechanical excitation frequency, which may be related to the 

gear frequency, rotational unbalance, and structural resonance 

induced by the system operation. 

 
Fig. 6 Healthy gear vibration response 

 
Fig. 7 Spectrum of vibration response of healthy gear 

In Figure 8, the signal is periodic but varies in amplitude. 

It is observed as an amplitude modulation, which indicates the 

existence of a frequency component that overlaps the 

frequency.  

The deviation is greater than ±4 m/², a high value for a 

traditional rotating rotor. This may indicate dynamic failure 

and possible harmonic excitation, all caused by the 

eccentricity fault of 50 µm. 
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Fig. 8 Gear vibration response with 50 m eccentricity 

 
Fig. 9 Spectrum of gear vibration response with 50 m eccentricity 

However, the peaks observed in Figure 9 indicate the 

harmonics and characteristic frequencies of the system. The 

central peak indicates a resonance phenomenon likely related 

to a mechanical component such as a gear, bearings and shaft. 

The observation of several shifted peaks characteristic of the 

harmonic excitation generated by the rotating element, 

especially at 31.25 Hz, as well as at 308.6 Hz, 645.4 Hz and 

988.3 Hz, indicates the presence of mechanical resonances. 

These observations may indicate cyclic disturbances such as 

imbalance, tooth irregularities (eccentricity) and even 

misalignment between the shafts.   

In Figure 10, the signal clearly shows cyclic behavior 

with an envelope-like amplitude modulation. This 

phenomenon indicates a superposition of similar frequencies, 

resulting in a whipping effect characteristic of cyclic defects 

such as dynamic eccentricity, misalignment, and gear mesh. 

This indicates a system subjected to a high and continuous 

dynamic load. The vibration excitation maintains its intensity 

throughout the period, indicating a permanent rotational 

imbalance and continuous harmonic excitation, possibly 

related to coupling and transmission. 

 
Fig. 10 Gear vibration response with 100 m eccentricity 

 
Fig. 11 Spectrum of gear vibration response with 100 m eccentricity 

In Figure 11, the frequency spectrum analysis reveals 

several adverse acceleration peaks, characteristic of twitching 

responses preceded by a significant mechanical abnormality. 

The central peak appears at 648.4 Hz and has an estimated 

amplitude of 5.36 m/s², indicating a dominant excitation 

frequency, which may result from an increased frequency 

resonance due to the eccentricity.  

The second harmonic was observed at 289.1 Hz (2.95 

m/s²) and 992.2 Hz (2.46 m/s²), indicating modulation of the 

capture signal caused by the repeated cycle of eccentricity 

effects. The presence of multiple harmonics, coupled with the 

relatively large amplitude of the peaks, confirms that a 100 µm 

eccentricity defect causes significant mechanical limitations. 

This defect causes a cyclic oscillation of the load transmitted 

between the teeth, creating quantified periodic oscillations 

over a wide frequency range. 

Therefore, the time signal and frequency spectrum 

correlation shows that the system is experiencing significant 

mechanical vibrations, probably due to harmonic excitation 

associated with the rotating components. Such a vibration 

pattern should be analysed using time-frequency methods 
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(STFT, 3D Waterfall FFT, and RPM-frequency mapping) to 

localise the anomaly more accurately. 

5.2. Fault Diagnosis in Gear Systems Using STFT, RPM-

Frequency Mapping and 3D Waterfall FFT 

For diagnostic accuracy, advanced signal processing 

techniques are necessary. The results of the simulated and gear 

responses were analyzed using STFT and RPM-frequency 

mapping and 3D Waterfall FFT. 

Figure 12 shows a spectrogram of the vibration signal 

generated following a perfect gear tooth engagement. 

However, Figure 13 illustrates a 3D waterfall diagram 

highlighting the frequency spectrum of the gear vibration 

response, demonstrating that the machine is operating 

correctly. 

 
Fig. 12 STFT-vibration response of healthy gears  

 
Fig. 13 A 3D frequency spectrum of healthy gears 

 
Fig. 14 STFT- gear vibration response at 50 m eccentricity 

 
Fig. 15 3D frequency spectrum of gear with 50 m eccentricity 

In Figure 14, the spectrogram obtained by applying STFT 

to the vibration signal of the defective gear highlights the 

variations in the energy frequency bands produced by an 

eccentricity coefficient of 50 μm during the meshing of the 

regularly spaced gear teeth between 0 and 497 Hz. Figure 15 

shows the first signs of failure associated with the 50 m 

eccentricity and the development of this defect, with many 

nonlinear reactions perceptible on the three-dimensional 

frequency spectrum. Figure 16 shows a shift of three energy 

frequency bands: band 1 shifted from 55 to 49 Hz, bands 2 and 

3, 497 Hz from 148 to 150 Hz, and 300 to 325 Hz, 

demonstrating the variation of the eccentricity value to 100 

m. Figure 17 shows that significant amplitudes of the gear 

frequency are detected in the range of 0–500 Hz. A change in 

the activation of narrowband processes is also noticed due to 

the increase in eccentricity up to 100 m. 
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Fig. 16 STFT-vibration response of gear at 100 m eccentricity 

 
 Fig. 17 3D frequency spectrum of gear with 100 m eccentricity 

 

 

 
Fig. 18 3D waterfall FFT of lateral vibration response: (a) Healthy gear 

system, (b) Faulty gear system with 50 m eccentricity, and (c) 100 m 

eccentricity. 

In Figure 18 (a), the spectrum remains stable throughout 

the analysed period. It is observed that soft and uniform bands 

form over time. These bands reflect constant mechanical 

harmonics, characteristic of the system's regular operation. A 

significant reduction in amplitudes is observed, reaching -100 

dB above 400 Hz. The absence of clear peaks, distortions and 

random variations indicates no dynamic defect such as 

misalignment and eccentricity. In Figure 18 (b), it is observed 

that the overall structure remains relatively well-regulated, but 

some aspects indicate the presence of a minor problem 

compared to a perfect system.  

The leading bands are still distinct, but they show 

intensity anomalies. Some frequencies are particularly 

noticeable, especially those between 200 and 400 Hz. This 

behaviour is typical of a moderate eccentricity defect of 50 
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micrometres. The defect creates cyclic forces that amplify the 

signal frequencies, which are related to the rotation speed of 

the gear system. It also notices that the high frequencies retain 

some energy but usually decrease rapidly in an intact system. 

This indicates that the energy in these regions is higher than 

expected, which could signal the beginning of slight 

degradation.  

However, the spectrum tends to remain generally constant 

over time. In other words, the problem does exist, but it does 

not yet appear to be serious. In  Figure 18 (c), a greater 

distortion of the frequency landscape is observed compared to 

a healthy and slightly defective system. The amplitude bands 

show less uniformity and increased irregularity, signalling 

enhanced vibration excitation in the system. Considerable 

amplification is observed in the frequency range between 100 

Hz and 400 Hz, indicating that the more pronounced 

eccentricity defect produces stronger dynamic forces up to 100 

micrometers. In addition, high-frequency energy is also 

present in notable quantities, characterized by a much slower 

amplitude damping, even beyond 500 Hz. This indicates that 

the system is undergoing significant degradation, likely 

impacting its optimal operation in the medium term. 

5.3. Mesh Stiffness Evaluation for Gears without and with 

Eccentricity Faults 

This study analysed the time-varying mesh stiffness of a 

two-stage spur gear system in healthy and different 

eccentricity faulty gear cases. For simplicity, the eccentricity 

is introduced in the first stage of the spur gear system. The 

diagram, as shown in Figure 19, illustrates the progression of 

gear stiffness as a function of the gear system's angular 

motion. 

 
Fig. 19 Gear mesh stiffness with an eccentricity at different levels. 

Figure 19 shows that the gear stiffness reduces 

significantly with increasing eccentricity. The gear stiffness 

approaches 2.0 × 105 N/m without eccentricity, indicating 

ideal tooth contact. At an eccentricity of 50 μm, a significant 

decrease is observed; the stiffness decreases to about 1.75 × 

105 N/m, and at an eccentricity of 100 μm, the stiffness 

decreases continuously to about 1.5 × 105 N/m. This work 

shows that eccentricity negatively affects the mechanical 

stiffness of the gear contact, probably due to backlash 

fluctuations and temporary angular misalignments of the gear 

profiles.  

6. Discussion 
In the study, Yu et al. proposed a dynamically designed 

model based on a single rotor, which was designed 

considering local resources and profile imperfections. It is 

mainly based on finite element models combined with 

traditional frequency analysis, thus allowing for an efficient 

representation of structural defects on a large scale. However, 

this method is limited to identifying microdamages and 

rapidly fluctuating dynamics.  

Contrary to the method used by Yu et al., the proposed 

approach consists of using STFT focused on the modulated 

frequency bands, even with an eccentricity of 50 μm, as shown 

in Figure 14. This illustration shows a clear evolution of the 

frequency bands between 0 and 497 Hz in the grid phase, 

demonstrating the response of the STFT to standard values in 

a narrow range.  

The ability of STFT to provide feature resolution allows 

one to understand local frequency changes associated with 

indirect dynamic progression, which is impossible with the 

global techniques used by Yu et al. without compromising 

accuracy. Wang et al. used the Finite Element Method (FEM) 

in conjunction with traditional Fast Fourier Transform (FFT) 

analysis to investigate dynamic transmission errors due to 

eccentricity. Their method provides a stable and complete 

result of the system frequency behavior, but cannot track 

fluctuations during transient phases and under variable loads. 

As shown in Figures 15, 17 and 18, the RPM frequency, 

combined with 3D FFT waterfall analysis, is used not only to 

visualize the dominant frequency peaks associated with 

system anomalies, such as 645 Hz at 50 μm and 648 Hz at 100 

μm. These methods are crucial since they allow monitoring 

variations in harmonic characteristics to motor speed. The 

frequency and speed are shown in Figures 15 and 17. The 

results show the mutation and expansion of the frequency 

bands, clearly showing the temporal evolution of the fault. 

Figure 18, which shows a 3D FFT waterfall, shows an increase 

in distortion in the frequency bands from 100 Hz to 400 Hz as 

the eccentricity increases, a dynamic behavior that traditional 

FFT analysis cannot detect. 
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7. Conclusion  
This study aims to investigate a nine-degree-of-freedom 

dynamic model for a two-stage drive system, with special 

attention to eccentricity anomalies. Accurate modelling based 

on the Lagrangian formula allows us to evaluate the effects of 

eccentricity on the stiffness and vibration response of the 

system. The vibration analysis and Time-frequency approach, 

such as the RPM-frequency map, 3D FFT waterfall and STFT, 

were used for efficient fault diagnostics in the spur gear 

system under various operational conditions.  

The combination of RPM-frequency map, 3D FFT 

waterfall and STFT provide very effective in detecting short-

term disturbances, including minor amplitude anomalies (50 

μm). This method, which differs from classical frequency 

analysis methods, allows the detection of anomalies at a 

specific moment and tracking their development over time and 

according to the operating mode. The data show that the 

increase in eccentricity error (100 μm) leads to a significant 

decrease in coupling stiffness, an increase in oscillation 

harmonics, and a gradual deterioration of the spectrum, which 

is observed in the frequency ranges from 100 to 500 Hz as 

shown in Figures 17 and 18. The dynamic evolution of 

vibration signals, which are difficult to detect with traditional 

methods (FFT), highlights the importance of time-frequency 

tools in the early diagnosis of mechanical defects. Finally, this 

study deepens our understanding of the nonlinear behavior 

caused by eccentricity errors in gear systems. It highlights the 

importance of using sophisticated analytical methods for more 

accurate condition diagnosis, which is the basis for industrial 

applications (power generation, aerospace and robotics) of 

predictive maintenance and intelligent monitoring of 

mechanical systems. Based on the results obtained, future 

research and practical applications can be conducted to 

enhance the field of diagnostics. 
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