
International Journal of Engineering Trends and Technology Volume 73 Issue 6, 318-335, June 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I6P127 © 2025 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Optimized Horizontal and Vertical Dimension Selection

using Hybrid Sampling and Quadratic Discriminant

Analysis for Predicting Software Faults

Yuvaraj K1, Balaji N V2

1,2Department of Computer Science, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India.

1Corresponding Author : kyuvarajj@gmail.com

Received: 14 March 2025 Revised: 12 May 2025 Accepted: 07 June 2025 Published: 28 June 2025

Abstract - Software fault prediction is significant research intended to ascertain the faults in the software modules by analysing

their various parameters. It aims to ensure maximum quality with minimum time, effort, cost, and usage of testing resources for

the underlying software. Like any application, the quality of the data prominently stimulates the prediction result of the software

fault. Intrinsically, several challenges, such as class imbalance, irrelevant and redundant attributes, and instance noise, exist in

the software defect datasets. This irrelevant input slows the underlying prediction model's performance and produces erroneous

prediction results. A data preprocessing methodology has been presented to address this problem by properly choosing the

vertical and horizontal dimensions to ensure the quality of the input data. To handle data imbalance in the horizontal dimensions,

hybrid sampling that uses SMOTE for oversampling and random under-sampling is applied to the data. It also uses the edited k

nearest neighbour rule to remove noises. On the other hand, significant attributes from the vertical dimensions of the dataset are

identified by applying the quadratic discriminant analysis. Several datasets have been used in the experimental study to assess

the suggested preprocessing model's performance. The findings show that the suggested model performs better as it maintains

the quality of the pre-processed dataset. The comparative analysis ensures that the suggested model overcomes the difficulties

and performs well enough to forecast software module defects with improved quality up to 2.6% to 5.2% of AuC values.

Keywords - Class imbalance, Edited k-nearest neighbour rule, Quadratic discriminant analysis, Random sampling, Software

defects, Software fault prediction.

1. Introduction
In today's world, software has evolved as the strongest

medium for automated systems and is truly ruling the entire

world. Owing to technological growth and e-business,

software has become the most significant entity for

individuals and businesses [1]. In software development,

identifying faults in the software at an early stage is one of the

most difficult tasks. Classifying software errors is a branch of

study in software quality assurance that focuses on testing,

code inspection, and identifying faulty modules.

As the size of software continues to increase rapidly, the

probability of faults associated with it is also growing

substantially. Syntactic, semantic, service, communication,

and exception failures within software modules are software

defects that can lead to code complexity, reduced human

understanding, and other issues [2]. These faults result in

system failure and reduced quality and compromise software

reliability, affecting organizational goodwill and causing

financial loss. Because software development progresses

through various lifecycle phases, errors in one phase can

propagate to others. Detecting such errors in later stages

requires reworking the entire process, increasing costs and

manpower [3]. Consequently, increasing interest has been in

predicting software flaws early in the development cycle [4].

Once faulty modules are identified early, it becomes

relatively easier to build dependable and high-quality

software. To improve software quality, several statistical

models, machine learning algorithms, and software computing

approaches are commonly used to forecast software defects

using data from previously reported software defects [5].

Classification models are widely used to separate faulty

modules from non-faulty modules. However, these models

often face limitations in effectively predicting fault-prone

software modules because of several persistent challenges in

software fault prediction [4, 6]. One major concern in

predicting software faults is the class imbalance problem

because of the unequal distribution of faulty and non-faulty

instances. This often leads to biased classification results [7,

8]. Another significant issue is selecting appropriate software

metrics for inclusion in the fault-detection model.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:kyuvarajj@gmail.com

Yuvaraj K & Balaji N V / IJETT, 73(6), 318-335, 2025

319

A software metric is defined as a measurable

characteristic or indicator of the software that helps evaluate

its quality. These metrics are widely used to analyze software

quality, assess execution time, detect defects during

development, evaluate effectiveness, and control execution

[9]. They can be broadly categorized into Halstead metrics,

object-oriented metrics, code complexity metrics, size-based

metrics using LOC, quality-based metrics, and others. The

effectiveness of fault-prediction models is highly dependent

on the relevance and selection of these metrics [10].

Although various studies have independently addressed

the class imbalance issue or software metric selection

challenge, few approaches have addressed both problems in a

unified framework. The lack of an integrated data

preprocessing methodology highlights a significant research

gap in software fault prediction. Moreover, existing models

often fail to account for the combined effect of noise in the

data and irrelevant attributes, which further affects the

performance and accuracy of classification models.

Addressing the horizontal and vertical aspects of data

preprocessing in a cohesive manner remains an underexplored

area.

Despite the importance of class imbalance handling and

software metric selection, limited work in the literature

addresses these two challenges [11, 12]. This gap motivates

the present study, which proposes a data preprocessing model

to enhance the dataset by optimizing horizontal and vertical

dimensions. Horizontal data preprocessing handles class

imbalance using hybrid sampling methods-SMOTE

oversampling and random undersampling -along with the

edited k-nearest neighbour (ENN) for noise removal. Vertical

data preprocessing focuses on selecting significant attributes

from the full feature set using Quadratic Discriminant

Analysis (QDA). Various datasets and classifiers were used in

the experimental analysis to evaluate the effectiveness of the

proposed preprocessing model. The study also compared the

results with several existing models to validate the

improvements.

The remainder of this article is structured as follows. A

comprehensive review of the proposed study from the

literature is presented in Section 2. The proposed model,

which has a suitable architecture framework and horizontal

and vertical data preprocessing in the following subsections,

is discussed in Section 3. Section 4 deals with the

experimental setup, dataset used, and performance metrics

used in the evaluation. In Section 5, the results of the

experiments are meticulously analyzed and compared with

those of other currently used models. The paper concludes

with the suggested future directions in Section 6.

2. Related Work
Software defect detection is the most significant research

field for predicting fault-prone software modules. Several

studies have focused on applying machine learning classifiers

to discriminate software modules as defective and non-

defective [13, 14], in addition to applying other techniques

such as clustering [5, 15] and deep learning [16] for effective

results. Usually, classifiers are trained using the training set

for fault prediction [17].

However, the fault class will be a minority class with a

minimum sample size, resulting in an imbalanced dataset. The

prediction ability of the underlying model is always

jeopardized when dealing with datasets with an imbalance in

class. Thus, the superiority of the dataset is imperative to

obtain better prediction results. The existence of irrelevant

features and noisy instances exacerbates the problem of data

imbalance by lowering the precision and generalizability of

fault-prediction models. Consequently, both feature selection

and instance quality need to be improved. Few researchers

have contributed their research on instance reduction and

feature selection, specifically suitable for fault predictions.

A two-phase data preprocessing method was proposed to

minimize the number of samples of the defect datasets and

select the important features. It utilizes symmetrical

uncertainty and threshold-based clustering for selecting

features that ensure high relevancy and low redundancy, and

it applies random sampling to balance the class [11, 18]. The

results are limited to the kNN, c4.5 decision tree, and Naive

Bayes classifiers. A three-phase model comprising inter-

quartile-range based noise removal, SMOTETomek for class

balancing and voting-based ensemble feature selection was

proposed to have high-grade preprocessing results [19].

Similarly, information gain-based feature selection,

SMOTE-based resampling, and iterative noise filtration

utilizing classifier fusion for noise elimination were proposed.

However, the work lacks proof of its efficiency compared to

other models [20]. Although these studies showed that

combining several preprocessing methods can improve model

performance, they frequently have limitations regarding

validation, algorithm support, or benchmarking against other

models.

A linear kernel support vector machine (SVM) with

recursive feature elimination (RFE) termed SVM-RFE was

proposed and evaluated using an SVM classifier to anticipate

defects in software datasets. However, the selected features

are more numerous, which makes the classification process

difficult [21]. A method for selecting defect forecasting

models using decision tree logic and fault characteristics has

been suggested [22]. An improved regularized linear

discriminant analysis was employed to select significant

features and was tested using a few DNA microarray gene

expression datasets [23].

A hybrid feature selection model using chi-square,

information gain, and correlation has been suggested [24].

Yuvaraj K & Balaji N V / IJETT, 73(6), 318-335, 2025

320

However, the model lacks an experimental analysis. Many of

these models exhibit potential in dimensionality reduction or

feature selection accuracy; however, their scalability, lack of

cross-domain testing, and insufficient evaluation limit their

applicability to real-world software fault datasets. A

partitioning filter with an iterative procedure was proposed to

remove instances identified as noise [25].

However, the results were still less significant for many

datasets. An analysis was conducted for sampling techniques

in which random undersampling yielded better results [8]. An

efficient dimensionality reduction model that utilizes Fisher

linear discriminant analysis (FLDA) was proposed, which

produces good results after resampling [26]. A survey of

various sampling techniques and their categories was

explicitly conducted for big data [27]. Despite these

developments, a few methods offer a unified approach

combining feature selection, class balance, and noise filtering

into a single preprocessing pipeline for software failure

prediction.

In addition to fault predictions, this study employed

several data preprocessing approaches suggested for different

classification models. A self-weighted supervised

discriminative feature selection (SSD-FS) approach that

utilizes sparsity-inducing regularization was proposed, which

yields better results than many other sparse-based feature

selections. However, the experiments were limited to kNN and

SVM classifiers [28]. Recently, this work was extended by

introducing a redundancy matrix-based framework to

minimize redundancy [29].

A mean-weighted pattern score using attribute rank-based

selection of features was proposed [30] with the idea of using

weights for different patterns [31]; however, the model failed

to apply the resampling process to balance the classes. A

SMOTE-ENN algorithm for balancing the class ratio and

CBoost, a cost-sensitive learning framework, was suggested,

but it was experimented explicitly with bankruptcy detection

[32]. Although hybrid- and ensemble-based models are

becoming increasingly popular, their direct application to

software failure datasets is frequently unproven or

insufficiently evaluated, as these contributions demonstrate.

Generalizability across various classifiers and dataset

properties has also not received enough attention. From the

literature review, it is clear that only a few methods focus on

imbalanced classes and software metric selection. This shows

an immediate need for a novel yet effective data preprocessing

model better suited for predicting faults from software fault

datasets. Thus, this paper proposes a data preprocessing model

suitable for effective software fault prediction.

3. Proposed Preprocessing Model
The proposed optimized horizontal and vertical

dimension selection model is intended to improve the data

quality through a series of data preprocessing steps, such as

hybrid Sampling and QDA, specifically for predicting

software faults. Software fault datasets contain a set of

software faults and normal instances, which is a binary

imbalanced dataset, and applying any model to predict the

faults in such datasets will result in inaccurate results.

Thus, the model uses sampling strategies to balance the

instances in the binary class, including random undersampling

and SMOTE oversampling. It also applies the edited k-nearest

neighbour approach to remove noise or outliers in dataset

instances. This phase completely deals with the instances,

which are the horizontal dimension of the dataset, in

contradiction to the vertical dimension, that represents the set

of attributes in the dataset.

As all the features may not contribute to the classification

or prediction accuracy, the significant features that have more

discriminant information with respect to the target class are

selected using the quadratic discriminant function using the

wrapper-based forward subset selection approach. The overall

framework of the proposed data preprocessing model with

horizontal and vertical dimension optimization approaches is

shown in Figure 1. The phases of the proposed model are

described in the following subsections.

3.1. Optimizing Horizontal Dimensions

The first step in the proposed data preprocessing model is

to optimize the horizontal dimension. It includes hybrid

sampling and noise removal by processing the instances in the

underlying dataset.

In the proposed model, hybrid sampling was applied to

adjust the instances of the underlying imbalanced dataset to

create a balanced dataset. The model applies SMOTE

oversampling and random undersampling techniques to take

advantage of both models, thereby neutralizing its limitations.

Although balanced, the dataset may have outliers, leading

to ineffective results. Thus, the proposed model utilizes the

edited kNN rules to detect outliers and enhance data quality

effectively. The process for maximizing the number of

instances for the majority and minority class instances of the

defect dataset is shown in Figure 2.

3.1.1. Class Balancing using Hybrid Sampling

Hybrid sampling is prevalent because an imbalanced

dataset always provides a biased prediction of majority class

instances.

Thus, for effective results, the proposed model utilizes the

synthetic minority oversampling technique (SMOTE)

algorithm for oversampling [33] and random undersampling

to balance the binary class's instance count. A simple

illustration of hybrid sampling is shown in Figure 3.

Yuvaraj K & Balaji N V / IJETT, 73(6), 318-335, 2025

321

Fig. 1 Detailed structure of the proposed data preprocessing approach

Fig. 2 Workflow for optimizing instances of the defect dataset

Fig. 3 Illustration of hybrid sampling

\

Vertical Dimension Pre-processing

Horizontal Dimension Pre-processing

1. Hybrid Sampling

Im
b

al
an

ce
d

D
at

as
et

Software Defect Dataset

Minority Class

Instances

Majority Class

Instances

SMOTE Over Sampling

Random Under Sampling

B
al

an
ce

d
 D

at
as

et

2. Noise Removal

Apply Edited kNN Rules Remove Noise Instances

3. Feature Selection

Balanced Clean Dataset Quadratic Discriminant Analysis Significant Features

Balanced Dataset

Minority Class Samples

Imbalanced Dataset

Majority Class Samples

Apply SMOTE Over

Sampling

Select Training Set

Compute Optimal

Balanced Ratio

Remove Outliers/Noise Instance using Edited k Nearest

Neighbour Rule

Apply Random Under

Sampling

Balanced Dataset
after Hybrid

Sampling

Original
Imbalanced

Dataset

Dataset after
Oversampling

SMOTE
oversampling to

generate new
instances for the
minority class

Random
undersampling to
remove instances

from the
majority class

Yuvaraj K & Balaji N V / IJETT, 73(6), 318-335, 2025

322

The oversampling and undersampling rates must be

computed for hybrid sampling based on the training set. Half

of the percentage difference between the instances of the

dominant and fewer classes was used to calculate the sampling

rate. Consider a dataset containing n instances, out of which

𝑛1 samples belong to the majority class and 𝑛2 is the sample

count of the minority class instances. Consequently, Equation

1 was used to compute the sample rate.

𝑆𝑟𝑎𝑡𝑒 =
𝑛1−𝑛2

2𝑛
∗ 100 (1)

Thus, in the proposed model, SMOTE increases the

instances, and random undersampling reduces the instances by

𝑆𝑟𝑎𝑡𝑒. However, the number of instances (nm) to be added and

reduced can be given as (𝑛1 − 𝑛2)/2 instances.

SMOTE Oversampling
The SMOTE algorithm uses the similarity between

minority class instances to create new, nonidentical samples

for the minority class. These added instances create a class-

balanced dataset, thus avoiding class imbalance and

overfitting issues. The k-nearest neighbors for each instance

in the minority class were determined. Then, the distance

between the feature vector of the instance and that of its N

neighbours is computed. The new instance, a synthetic

instance, is subsequently included in the feature vector after

the distance is multiplied by an arbitrary number ranging from

0 to 1. This is shown in (2).

𝑥𝑛𝑒𝑤 = 𝑥1 + [𝑑(𝑥1, 𝑥𝑛) ∗ 𝑟𝑛] (2)

Here, 𝑥𝑛𝑒𝑤 represents the newly generated instance, 𝑥1 is

the feature vector of the instance in the minority group,

𝑑(𝑥1, 𝑥𝑛) is the Euclidean distance between instance 𝑥1 and it

is a neighbour 𝑥𝑛, 𝑟𝑛 is a random number between 0 and 1. As

per the suggested model, N is calculated as the ratio of the

sample count to be added to the sample count in the minority

class 𝑛𝑚/𝑛2 and k is the smallest number divisible by 5

greater than 𝑛𝑚/𝑛2.

Random Under-sampling
Random undersampling was utilized to decrease the

sample count in the majority group. To balance the dataset,

samples from the dominant class were randomly chosen. This

iterative procedure is performed until the specified

distribution is reached. Random sampling always offers better

results than other undersampling techniques [9]. Instead of

randomly deleting the nm instances, the proposed model splits

the entire set of samples into subsamples and then deletes the

instances. Thus, for each k sample, N samples are deleted

randomly, where k is a random number, and N can be

computed as (𝑘 ∗ 𝑛𝑚)/𝑛1. For example, if the sample count

to be deleted is 4000 with a total sample size of 8000, and if

10 is selected as the k value, then N is 5. This implies that for

every k (=10) instance, N (=5) instances were deleted

randomly. The idea is to select instances for deletion in a

distributed manner based on subsamples with k instances.

3.1.2. Noise Removal using Edited K Nearest Neighbour

The number of occurrences in the majority and minority

groups in the dataset was balanced using hybrid sampling.

However, the dataset may contain noise; thus, the noise can be

identified and removed using the Edited K Nearest neighbour

(ENN) approach for effective prediction results. A simple

illustration of the noise removal using the ENN algorithm is

shown in Figure 4.

The working principle of the ENN approach is that if the

sample contains more neighbours from different classes, it can

be considered an outlier and removed. Thus, for each instance

x, it identifies the k nearest neighbours, says k=10, then x can

be considered an outlier and removed if the neighbour count

from other groups is greater than the same group. Thus, the

output of the first phase after applying hybrid sampling and

noise removal using ENN is a balanced, clean dataset without

more variation in the sample count between binary groups.

Algorithm 1 provides the pseudocode for the proposed

horizontal dimension optimization.

Fig. 4 Illustration of noise removal using ENN algorithm

Algorithm 1: Horizontal Dimension Optimization

Input: Imbalanced dataset D with n instances, n1 minority

instances, n2 majority instances

Output: Balanced dataset

Begin hybrid_sampling()

 //Compute the sampling rate

 nm = (n1-n2)/2 //Number of instances to be added or

deleted

 State = (nm/n)*100; //Converting to sampling rate

 //SMOTE Oversampling

 N = nm/n2//SMOTE percentage

 Identify the suitable k value

 For each instance, x in the majority class do

 N = nm/n2

 Find the k nearest neighbours from minority

classes

 While N ≠ 0 do

 Select a neighbour xn

Balanced Dataset
Balanced Clean Dataset
after Outlier Removal

ENN Algorithm for
identifying and

removing outlier noise

Yuvaraj K & Balaji N V / IJETT, 73(6), 318-335, 2025

323

 Compute d(x, xn) = |x- xn| and select rnє(0,1)

 xnew = x1 + [d(x1,xn)*rn]

 Append the instance xnew in D

 Decrement N by 1

 End While

 End For

 //Random under-sampling

 Select a value for the variable k

 Compute N = (k*nm)/n1

 For each iteration, select k instances from the majority

class without replacement. Do

 For i from 1 to N, do

 Remove one instance x randomly and update

in D

 End For

 End For

 //ENN for noise removal

 For each instance x in D, do

 Select k nearest neighbours

 Compute nsc and nds as neighbours from the same

class and different class

 If nsc < ndc, then

 Remove instance x from D

 End If

 End For

End Procedure

3.2. Optimizing Vertical Dimensions

In the proposed model, the vertical dimensions represent

the features of software fault datasets. Choosing the optimal

elements influencing classification accuracy is crucial to

detecting the fault-prone software module. The proposed

model uses QDA to select important features from the

underlying datasets. It uses a wrapper approach in the feature-

selection process, in which the best subset with the minimum

error is considered the significant feature set. To compute the

error rate of the proposed model, the leave-one-out cross-

validation error rate was used [34].

3.2.1. Quadratic Discriminant Analysis
QDA is a reproductively supervised feature-reduction

model. Here, features that increase the space between classes

are selected [35]. The QDA can be evaluated from simple

probabilistic models using the class conditional probability of

the data with respect to each value of the target variable. Thus,

for each training sample x, class prediction k can be made

using the Naive Bayes algorithm that maximizes the posterior

probability, as given in Equation 3.

𝑝(𝑦 = 𝑘|𝑥) =
𝑝(𝑥|𝑦 = 𝑘)𝑝(𝑦=𝑘)

𝑝(𝑥)
 (3)

However, QDA is modelled as a bivariate Gaussian

distribution 𝑝(𝑥|𝑦 = 𝑘) With binary class k =2 and density d

representing the number of features. The density ratio can then

be computed, as shown in Equation 4.

𝑑′(𝑥) =
|∑1|−1/2

|∑2|−1/2 𝑒𝑥𝑝 [−
1

2
(𝑥 − 𝜇1)𝑡∑1

−1(𝑥 − 𝜇1) +

1

2
(𝑥 − 𝜇2)𝑡∑2

−1(𝑥 − 𝜇2)] (4)

Here, 𝜇1 and 𝜇2 are the mean vectors of specific classes

class1 and class 2, respectively, which can be computed by

averaging the input variable of each specific class. The

variables ∑1 and ∑2 specify the covariance matrix of specific

classes, which is computed as the covariance of the variables

of each specific class [36]. The expression (𝑥 − 𝜇1)𝑡∑1
−1(𝑥 −

𝜇1) signifies the Mahalanobis distance between instance x and

the mean of class [37]. Taking the natural logarithm on both

sides of Equation 2 results in a quadratic function, as in

Equation 5.

log(𝑑′(𝑥)) =
1

2
log (

∑1

∑2
) −

1

2
[(𝑥 − 𝜇1)𝑡∑1

−1(𝑥 − 𝜇1) −

(𝑥 − 𝜇2)𝑡∑2
−1(𝑥 − 𝜇2)] (5)

Applying the natural logarithm for the posterior

probability given in Equation 1, substituting the values in

Equation 5, and solving the equation results in Equation 6, in

which cl1and cl2 represents classes 1 and 2.

𝑞𝑑𝑎(𝑥) = {
x ∈ cl1 if log(𝑑′(𝑥)) > 𝑙𝑜𝑔 [

𝑝2𝑐(1|2)

𝑝1𝑐(2|1)
]

x ∈ cl2 if log(𝑑′(𝑥)) ≤ 𝑙𝑜𝑔 [
𝑝2𝑐(1|2)

𝑝1𝑐(2|1)
]
 (6)

3.2.2. Feature Selection using QDA
Three major categories can be used to classify feature

selection techniques: filter, wrapper, and embedding. In the

proposed model, significant features are identified using the

wrapper approach. Both forward selection and backward

elimination can be used in the wrapper strategy. A feature is

added to the subset with the least error at each iteration of the

forward selection process, which begins with a null set and

ends when the error remains constant. In contrast, backward

elimination begins with a complete set of features, and at each

iteration, the feature with the highest error is identified and

eliminated. The iterations ended when the error rate did not

change significantly. The proposed model uses the forward

elimination approach to identify the features with the highest

biased information with respect to the class using QDA. At

each iteration, the discrimination function using QDA is

computed for the features returned from the forward selection

search. Here, each feature subset is evaluated using QDA, and

the subset with the minimum error rate is considered the best

subset to be selected. The proposed model utilizes the leave-

one-out cross-validated error rate offered by [34] because it

produces better results than other error rates. The model leaves

each instance from the given dataset and applies a QDA

discrimination function to the remaining instances. After

evaluating the remaining instances, the class value was

predicted for the instance on the left. This was performed for

Yuvaraj K & Balaji N V / IJETT, 73(6), 318-335, 2025

324

all instances in each group. Equation 7 can then be used to

obtain the error rate.

𝑙𝑜𝑜_𝑐𝑣_𝑒𝑟𝑟𝑜𝑟 =
𝑛1𝑚+𝑛2𝑚

𝑛1+𝑛2
 (7)

Here, 𝑛1𝑚and 𝑛2𝑚 represents the number of misclassified

instances in classes 1 and 2, respectively, and 𝑛1 and 𝑛2
specify the sample count in classes 1 and 2, respectively. The

pseudocode for selecting the significant features from the

given dataset with the wrapper approach-based forward

selection search method using the QDA classifier and leave-

one-out-cross validation error rate estimation is given in

Algorithm 2.

Algorithm 2: Vertical Dimension Optimization

Input: Dataset D with n features

Output: Significant Feature Subset

Begin QDA_feature_selection()

 Fs={ }

 While (variation exists in loo_cv_error), do

 For each feature i, i∉Fs do

 Fs = Fs∪i

 Apply the QDA model with the features in the

set Fs

 Estimate the error loo_cv_error as in Equation (7)

 End For

 Select the feature subset Fs with

min(loo_cv_error)

 End While

 Return the dataset with the best feature subset Fs

End Procedure

4. Experimental Analysis
The experimental evaluation and various result analyses

conducted by simulating the experiments using the suggested

model to demonstrate its efficacy are presented in this section.

The experiment was performed on an Intel Core i3 processor

with a speed of 1.70GHz and 4GB RAM running a 64-bit

Windows Operating System. Software tools such as Weka and

Orange Tools were used to analyse several models'

correctness statistically, and Python was used to build the

suggested preprocessing model.

4.1. Dataset Used
To assess the performance level of the proposed model, a

few experiments and analyses of the obtained results were

conducted using various real-time datasets collected from

software projects, including NASA datasets [38] and the Bug

dataset from the Eclipse project [39]. For our analysis, 11

datasets (CM1, KC1, KC3, MC1, MC2, MW1, PC1, PC2,

PC3, PC4, and PC5) from NASA projects [40] and three

datasets (Eclipse 2.0, Eclipse 2.1, and Eclipse 3.0) from

eclipse projects were used. In software defence datasets, the

features represent some software metrics that help classify the

error-prone module.

The software metrics utilized in the NASA datasets

include the LOC, Complexity, and Halstead metrics. The

complexity measure was proposed in [41], in which an

increase in the complexity of a path increases the possibility

of fault. It comprises several metrics, including LOCs and

cyclomatic, essential, and design metrics. Halstead (1977)

[42] takes the readability of the code as a metric in which it is

difficult to read the code, indicating a higher possibility of

faults that can be divided into the base, derived, and LOC

metrics. Attributes with continuous values were discretized

for easy processing and data management. The Eclipse dataset

contains a set of metrics that include code complexity metrics,

syntax tree-based metrics, and abstract syntax tree-based

measures. However, the model preprocesses the datasets by

removing non-numeric features, thereby utilizing the numeric

features and transforming the datasets into binary classes by

updating various defect classes as defects. In addition, in any

dataset, the attributes with a single value will not provide any

information; therefore, they are also removed [11]. The details

of the datasets used in this study are given in Table 1. The

table presents the dataset's feature count, instance count, and

percentage of defect instances.

Table 1. Description of the dataset used

Dataset #Features #Instances % Defects

CM1 37 327 15.0

KC1 21 1162 28.1

KC3 39 194 18.6

MC1 38 1988 2.3

MC2 39 161 32.3

MW1 37 253 10.7

PC1 37 679 9.0

PC2 36 745 2.1

PC3 37 1077 12.4

PC4 37 1287 13.8

PC5 38 1711 27.5

Eclipse 2.0 155 6729 14.5

Eclipse 2.1 155 7888 10.8

Eclipse 3.0 155 10593 14.8

4.2. Evaluation Metrics
The only method to assess the effectiveness of a model is

to use evaluation metrics to quantify its performance. This

result specifies the quality of the underlying model. Several

evaluation metrics are available in the literature for various

applications [43]. The most frequently used evaluation metrics

in many applications pertaining to different research fields are

accuracy, precision, and error rate. This study uses some of the

most widely used measures in the defect detection sector.

4.2.1. Classification Accuracy

This is the main assessment statistic that calculates the

proportion of correctly classified examples out of all the

occurrences. It is most effective for balanced datasets

containing equal sample counts in all classes. Higher accuracy

values indicate better performance.

Yuvaraj K & Balaji N V / IJETT, 73(6), 318-335, 2025

325

4.2.2. Area under the Receiver Operating Characteristic

(AUC)

This curve eventually applies the trapezoid rule to

estimate the performance by plotting the true positive and

false positive rates. It evaluates the distance between target

variables. The value of AuC always lies between 0 and 1,

representing the worst and best performances of the model,

respectively.

4.2.3. Precision

This represents the rate of truly positive predictions that

are positive. This can be measured as the ratio of true-positive

instances to positive instances. The increase in the values

indicates an increase in performance.

4.2.4. Recall

It is often used along with precision, which indicates the

positive prediction rate that is successfully predicted. It can be

measured as the number of true positives that are correctly

identified. The increases in the values indicate an increase in

performance.

4.2.5. F-Measure

This is a measure of the test accuracy that can be

calculated as the harmonic mean of the precision and recall

values.

4.2.6. Root Mean Square Error (RMSE)

This quantifiable metric computes the standard deviation

of prediction errors. It was computed as the square root of the

mean of the square of all errors.

4.2.7. Mean Absolute Error (MAE)

This evaluates the closeness between the predictions and

actual outcomes-generally, the lower the errors, the higher the

prediction model's performance. Thus, low values of RMSE

and MAE indicate better performance.

5. Results
To evaluate the model's effectiveness, the proposed

horizontal data preprocessing (HDP) and vertical data

preprocessing (VDP) are individually experimented with

various trials using 11 different classifiers for the software

fault datasets presented in Table 1.

The classifiers used for the proposed study were Naive

Bayes (NB), Multinomial Logistic Regression (MLR),

multilayer perceptron (MLP), Support Vector Machine

(SVM), AdaBoost (ADB), bagging (BAG), Additive Logistic

Regression (ALR), stacking (STK), Logistic Model Tree

(LMT) and Random Forest (RF). The classification accuracies

of the classifiers after HDP, VDP, and without data

preprocessing (WDP) for the classifiers using 14 datasets are

presented in Table 2.

Table 2. Classification accuracy of different classifiers using the proposed model

Datasets Method
Different Classifiers

Avg.
NB MLR MLP SVM ADB BAG ALR STK LMT RF

CM1

WDP 79.20 84.10 78.29 87.16 86.54 87.16 84.10 87.16 85.93 85.63 84.53

HDP 83.57 87.54 81.59 89.78 88.41 89.63 86.74 90.37 87.23 87.24 87.21

VDP 84.23 86.96 83.17 91.71 89.67 90.12 85.78 89.71 88.11 89.47 87.89

KC1

WDP 72.70 75.32 75.82 74.05 73.80 76.33 74.47 73.46 75.32 76.92 74.82

HDP 78.93 77.38 77.92 79.14 78.31 80.12 77.82 76.19 79.33 79.18 78.43

VDP 77.11 79.23 76.72 78.91 77.59 79.97 78.93 77.59 78.45 80.28 78.48

KC3

WDP 78.87 77.84 76.80 81.96 82.47 78.87 81.96 81.44 79.38 81.44 80.10

HDP 80.19 81.47 80.56 83.92 83.17 80.96 83.19 84.25 83.47 83.11 82.43

VDP 81.28 83.72 82.96 85.17 84.23 82.77 84.52 85.16 84.44 83.69 83.79

MC1

WDP 91.41 95.82 97.14 97.49 97.02 97.14 97.26 97.49 97.49 97.37 96.56

HDP 93.56 96.78 98.23 97.93 98.59 98.17 98.23 98.17 98.82 98.87 97.74

VDP 95.22 97.49 98.71 98.18 97.99 98.29 98.59 98.39 98.98 98.57 98.04

MC2

WDP 72.00 61.60 70.40 68.80 69.60 69.60 66.40 64.80 64.80 70.40 67.84

HDP 75.29 68.89 74.88 74.23 74.34 75.18 71.08 69.82 69.58 74.21 72.75

VDP 76.82 70.29 76.18 76.23 73.87 76.31 72.53 70.18 70.24 75.35 73.80

MW1

WDP 81.42 86.96 86.56 89.33 87.75 89.33 90.12 89.33 90.51 88.54 87.98

HDP 83.29 90.54 88.74 91.69 90.47 91.11 92.48 92.44 93.53 91.15 90.54

VDP 84.29 91.47 89.52 90.11 91.28 92.47 94.55 92.69 94.78 92.66 91.38

PC1

WDP 88.09 91.49 91.91 91.21 90.92 91.49 91.49 91.35 90.78 92.06 91.08

HDP 90.12 92.59 93.85 93.48 92.79 92.85 94.59 93.36 92.22 94.18 93.00

VDP 91.15 92.69 94.43 94.32 92.93 93.18 95.57 93.66 93.78 94.28 93.60

PC2

WDP 90.74 96.64 97.58 97.85 97.85 97.85 97.45 97.85 97.85 97.85 96.95

HDP 92.55 97.56 97.82 98.96 98.02 98.87 98.36 99.12 98.67 98.82 97.88

VDP 94.28 97.29 98.11 98.55 98.49 98.82 98.63 98.85 98.29 98.11 97.94

Yuvaraj K & Balaji N V / IJETT, 73(6), 318-335, 2025

326

PC3

WDP 80.97 86.58 85.03 86.97 86.84 86.58 86.19 86.97 85.68 87.35 85.92

HDP 84.96 88.23 87.89 89.37 89.73 88.17 88.56 88.28 87.28 88.49 88.10

VDP 83.75 88.19 86.87 88.96 89.27 89.85 89.17 88.59 88.11 89.08 88.18

PC4

WDP 85.91 90.23 90.48 89.00 89.12 89.74 90.85 87.89 89.86 90.73 89.38

HDP 89.21 92.18 93.18 91.58 91.8 91.28 92.35 89.28 92.63 93.12 91.66

VDP 88.48 92.52 93.13 92.65 92.82 92.64 92.75 89.08 91.11 91.22 91.64

PC5

WDP 73.72 76.03 73.21 74.49 73.08 75.51 74.49 72.69 74.87 76.54 74.46

HDP 78.59 79.96 76.31 76.63 78.58 79.29 78.2 76.59 78.72 79.28 78.22

VDP 79.18 79.28 77.29 77.24 77.67 78.63 77.98 76.12 78.12 79.09 78.06

Ecl.2.0

WDP 79.78 82.56 77.69 86.23 85.28 86.98 83.29 86.48 84.72 84.42 83.74

HDP 80.29 86.36 80.87 88.09 87.49 88.07 85.59 89.87 88.19 86.98 86.18

VDP 82.69 87.29 82.75 89.69 88.27 89.34 86.69 89.18 88.27 87.08 87.13

Ecl.2.1

WDP 82.18 83.29 79.18 87.28 90.28 87.18 85.19 88.19 85.34 86.59 85.47

HDP 83.29 85.57 82.19 89.21 91.25 89.09 87.09 90.37 89.49 88.92 87.65

VDP 84.25 86.25 83.58 89.09 92.25 90.17 87.54 91.52 89.73 89.64 88.40

Ecl.3.0

WDP 83.29 84.49 80.93 88.09 91.48 90.18 87.57 90.18 88.93 89.08 87.42

HDP 86.94 86.97 83.21 91.48 93.09 92.05 88.49 92.63 91.37 92.82 89.91

VDP 86.08 86.28 85.74 91.83 93.35 91.18 89.27 92.58 91.19 92.36 89.99

By analyzing the obtained results, the proposed vertical

data preprocessing and horizontal data preprocessing provided

better results individually regarding classification accuracy

than without data preprocessing. The overall accuracy of the

classifiers with different datasets without applying any

instance reduction or feature selection was 84.73%, whereas

those with only HDP and VDP were 87.26% and 87.74%,

respectively. Thus, the upsurges in the proposed HDP and

VDP accuracy are approximately 3% and 4%, respectively.

More specifically, the maximum increase in accuracy can be

seen for dataset MC2, with an HDP of 7.24% and VDP of

8.79%. In contrast, the minimum increase in accuracy with

HDP and VDP can be seen through dataset PC2 as 0.95% and

MC1 as 1.21%, respectively. This minimum variation was due

to the higher range of imbalances in the datasets. More

precisely, datasets PC2 and MC1 have a very minimal number

of defect instances of 2.1% and 2.3%, respectively; thus,

resampling the instances in the majority and minority classes

may not create much difference. This is illustrated in Figure 5.

Fig. 5 Increase in accuracy for different datasets

The classification accuracy obtained for various

classifiers and datasets is presented as a distribution in Figure

6. Consequently, the average rankings of several classifiers

over a range of datasets under the three approaches (Vertical,

Horizontal, and Without Data Preprocessing) given in Table 2

are displayed in Figure 7. These rankings are calculated by

assigning each classifier in each dataset a rank determined by

its performance and then averaging the rankings for each

preprocessing method over all datasets. Here, lower ranks

indicate a better performance. The robustness of RF, BAG,

and SVM is evident from their consistent ranking among the

top-performing techniques. This is followed by classifiers

such as ADB, ALR, STK, and LMT, which demonstrate

moderate performance. Although MLR, MLP, and NB had the

3.2

4.8

2.9

1.2

7.2

2.9

2.1

1.0

2.5 2.5

5.0

2.9
2.5

2.8

4.0

4.9
4.6

1.5

8.8

3.9

2.8

1.0

2.6 2.5

4.8

4.0
3.4

2.9

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

CM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 Ecl.2.0 Ecl.2.1 Ecl.3.0

In
cr

ea
se

 i
n

 A
cc

u
ra

cy
 (

%
)

Different Datasets

Horizontal Data Preprocessing

Vertical Data Preprocessing

Yuvaraj K & Balaji N V / IJETT, 73(6), 318-335, 2025

327

highest rankings, reflecting lower accuracy, the overall

classifier performance was marginally improved through

horizontal and vertical preprocessing, with vertical

preprocessing offering greater consistency. This implies that

data preparation enhances the effectiveness of classifiers,

particularly in ensemble- and margin-based approaches.

Fig. 6 Accuracy distribution with various models

Fig. 7 Average ranking of different preprocessing methods

Specifically, the proposed HDP and VDP performance

was also analyzed individually using AUC as the performance

metric by applying the 11 classifiers used in the study. The

average obtained values for HDP, VDP, and WDP with AUC

for the 14 software fault datasets are shown in Figure 8 for

ease of interpretation. Vertical and horizontal preprocessing

consistently yielded the highest AUC scores across almost all

datasets. The performance was the lowest when preprocessing

was omitted. This demonstrates that data preparation,

particularly through horizontal and vertical methods,

substantially improves the classification performance and

model reliability, underscoring its importance in enhancing

generalization and predictive accuracy.In addition, using the

11 classifiers employed in this study, the performance of the

suggested HDP and VDP was further examined separately

using a number of other metrics, including precision, recall, f-

measure, AuC, RMSE, and MAE. The average values

obtained for HDP, VDP, and without any data preprocessing

(WDP) with the above metrics for 14 software fault datasets

are presented in Table 3. From the obtained results, the

proposed HDP had an average value of 80.7% precision,

85.11% recall, 82.75% f-measure, 73.75% AuC, 26.61%

RMSE, and 14.14% MAE, whereas the proposed VDP had an

average of 80.8% precision, 85.81% recall, 8316% f-measure,

75.44% AuC, 23.39% RMSE, and 13.34% MAE.

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100 120 140 160

A
c
c
u

r
a

c
y

 %

Various Trials

Without Data Preprocessing

Horizontal Data Preprocessing

Vertical Data Preprocessing

8.7

6.9
7.1

4.4

5.0

4.0

5.5

4.8
5.2

3.4

8.4

7.1
7.3

4.3
4.6 4.7

5.5

4.6 4.6

4.0

8.5

6.6
7.1

4.4
4.9

4.0
4.6

5.0 5.2
4.8

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

NB MLR MLP SVM ADB BAG ALR STK LMT RF

A
v
er

ag
e

R
an

k

Different Classifiers

Without Data Preprocessing

Horizontal Data Preprocessing

Vertical Data Preprocessing

Yuvaraj K & Balaji N V / IJETT, 73(6), 318-335, 2025

328

Fig. 8 Average AUC values across different datasets

Table 3. Performance analysis with different metrics

Metrics Models
Software Defect Datasets

CM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 Ecl.2.0 Ecl.2.1 Ecl.3.0

Precision

WDP 0.817 0.654 0.696 0.944 0.558 0.755 0.803 0.961 0.740 0.715 0.624 0.714 0.753 0.787

HDP 0.867 0.786 0.785 0.955 0.702 0.783 0.816 0.977 0.797 0.762 0.725 0.743 0.784 0.814

VDP 0.857 0.775 0.778 0.966 0.712 0.799 0.816 0.979 0.808 0.770 0.739 0.746 0.760 0.807

Recall

WDP 0.794 0.748 0.801 0.966 0.678 0.880 0.911 0.970 0.809 0.894 0.745 0.775 0.769 0.789

HDP 0.814 0.789 0.836 0.978 0.731 0.897 0.923 0.982 0.848 0.914 0.795 0.795 0.789 0.824

VDP 0.825 0.791 0.847 0.987 0.744 0.907 0.937 0.989 0.867 0.910 0.814 0.791 0.787 0.817

F-Measure

WDP 0.805 0.698 0.745 0.955 0.613 0.813 0.854 0.965 0.773 0.794 0.679 0.743 0.761 0.788

HDP 0.840 0.787 0.810 0.966 0.716 0.836 0.866 0.980 0.822 0.831 0.758 0.768 0.786 0.819

VDP 0.841 0.783 0.811 0.976 0.728 0.850 0.872 0.984 0.836 0.834 0.775 0.768 0.773 0.812

AuC

WDP 0.747 0.608 0.629 0.796 0.532 0.656 0.692 0.808 0.671 0.607 0.576 0.659 0.700 0.723

HDP 0.801 0.742 0.723 0.821 0.687 0.697 0.719 0.837 0.729 0.670 0.681 0.699 0.740 0.754

VDP 0.809 0.752 0.732 0.847 0.711 0.729 0.734 0.857 0.752 0.699 0.707 0.724 0.739 0.769

RMSE

WDP 0.340 0.444 0.404 0.191 0.499 0.319 0.279 0.199 0.379 0.291 0.439 0.535 0.478 0.407

HDP 0.287 0.347 0.248 0.068 0.395 0.314 0.201 0.041 0.287 0.211 0.317 0.397 0.314 0.299

VDP 0.271 0.317 0.232 0.048 0.371 0.080 0.193 0.032 0.241 0.209 0.342 0.342 0.331 0.265

MAE

WDP 0.231 0.331 0.247 0.065 0.369 0.162 0.131 0.089 0.239 0.145 0.315 0.241 0.251 0.217

HDP 0.174 0.199 0.152 0.025 0.257 0.091 0.065 0.054 0.140 0.074 0.193 0.193 0.199 0.164

VDP 0.163 0.197 0.141 0.021 0.244 0.081 0.051 0.027 0.121 0.078 0.174 0.197 0.201 0.171

The increases in the precision, recall, f-measure, and AuC

rate for the suggested HDP were 7.37%, 3.35%, 5.45%, and

9.53%, respectively, compared to those without data

preprocessing.

Typically, the decreases in the values of error rates, such

as RMSE and MAE for HDP, are highly remarkable at 28.40%

and 34.72%, respectively. Correspondingly, the hike in

precision, recall, f-measure, and AuC for the proposed VDP

are appreciable with 7.52%, 4.19%, 5.98%, and 12.30%,

respectively, compared with no data preprocessing.

Additionally, the error rate decreases, such as RMSE and

MAE for VDP, are notable, with decreases of approximately

37.08% and 38.44%, respectively. Figure 9 shows the average

of the data in Table 3 as a bar chart.

Fig. 9 Analysis of the proposed model with performance metrics

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

CM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 Ecl.2.0 Ecl.2.1 Ecl.3.0

A
U

C
 V

al
u

es

Various Datasets

Without Data Preprocessing

Horizontal Data Preprocessing

Vertical Data Preprocessing

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Precision

Recall

F-Measure

AuC

RMSE

MAE

Values of Performance Metrics

Vertical Data Preprocessing

Horizontal Data Preprocessing

Without Data Preprocessing

Yuvaraj K & Balaji N V / IJETT, 73(6), 318-335, 2025

329

Table 4 presents the classification accuracy of the

classifiers across various software defect datasets using the

horizontal and vertical data preprocessing techniques

proposed in this chapter. The top-performing model varied

according to the dataset. SVM achieved the highest accuracy

for CM1 (95.59%), whereas RF performed best on KC1

(83.46%). AB outperformed the others on KC3 (87.80%),

Eclipse 2.1 (95.57%), and Eclipse 3.0 (97.31%). MLP led to

MC1 (99.79%) and PC4 (96.51%), and STK showed superior

performance with Eclipse 2.0 (94.28%) and PC2 (99.48%).

Similarly, NB performed best with MC2 (81.80%), LMT

excelled on MW1 (99.00%), ALR showed the highest

accuracy on PC1 (98.56%), BAG led on PC3 (94.07%), and

MLR outperformed the others on PC5 (84.12%). These results

highlight the dataset-specific effectiveness of the classifiers

and underscore the importance of selecting suitable models for

different datasets. Different datasets exhibited varying levels

of classification complexity, as reflected in the average

accuracy values of the classifiers shown in Figure 10. The

highest average accuracies were observed for MC1 (98.92%),

PC2 (98.71%), and PC1 (96.59%), indicating that these

datasets are easier to classify with clearly defined patterns that

classifiers can learn from effectively. Similarly, MW1

(95.76%) and PC4 (95.41%) demonstrated strong

classification outcomes. In contrast, lower average accuracies

in datasets such as KC1 (82.16%), PC5 (82.59%), and MC2

(78.83%) suggest challenges such as noise, class imbalance,

and less distinctive features. These results underscore the

significant influence of dataset characteristics on the model

performance.

Table 4. Accuracy analysis of the proposed model

Dataset
Classifiers

NB MLR MLP SVM AB BAG ALR STK LMT RF

CM1 88.11 91.42 87.05 95.59 93.55 94.00 90.62 94.25 91.99 93.35

KC1 82.11 82.41 81.10 82.32 81.49 83.30 82.11 80.77 82.51 83.46

KC3 84.19 83.16 82.13 87.28 87.80 84.19 87.28 86.77 84.71 86.77

MC1 97.12 98.59 99.51 98.98 99.09 98.79 99.09 98.89 99.48 99.37

MC2 81.80 75.27 81.16 81.21 79.32 81.29 77.51 75.16 75.22 80.33

MW1 88.51 95.69 93.74 95.91 95.50 96.69 98.77 96.91 99.00 96.88

PC1 94.14 95.68 97.42 97.31 95.92 96.17 98.56 96.65 96.77 97.27

PC2 95.64 98.92 98.47 99.32 98.85 99.23 98.99 99.48 99.03 99.18

PC3 89.18 92.45 92.11 93.59 93.95 94.07 93.39 92.81 92.33 93.30

PC4 92.54 95.85 96.51 95.98 96.15 95.97 96.08 92.61 95.96 96.45

PC5 83.34 84.12 81.45 81.40 82.74 83.45 82.36 80.75 82.88 83.44

Ecl.2.0 87.10 91.70 87.16 94.10 92.68 93.75 91.10 94.28 92.68 91.49

Ecl.2.1 89.57 90.57 87.90 92.53 95.57 93.49 90.86 94.84 93.05 92.96

Ecl.3.0 90.90 90.93 89.70 95.79 97.31 96.01 93.23 96.59 95.33 96.78

Fig. 10 Average ranking across different classifiers

The relative performance of the classifiers, as shown in

Figure 11, is illustrated by their average accuracies across the

datasets. The SVM (92.24%) and RF (92.22%) delivered the

best overall performance, highlighting their strong

generalizability across diverse software defect datasets.

Similarly, BAG (92.17%) and AB (92.14%) demonstrated

91.99

82.16

85.43

98.92

78.83

95.76 96.59
98.71

92.71

95.41

82.59

91.61 92.14
94.26

70

75

80

85

90

95

100

105

CM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 Ecl.2.0 Ecl.2.1 Ecl.3.0

A
v
e
r
a

g
e
 V

a
lu

e
s

in
 %

Different Datasets

Yuvaraj K & Balaji N V / IJETT, 73(6), 318-335, 2025

330

high accuracy, further confirming the robustness of the

ensemble methods. The ALR (91.42%), STK (91.48%), and

LMT (91.49%) followed closely, indicating consistent

reliability. In contrast, NB (88.87%) showed the lowest

average accuracy, likely owing to its strong independence

assumptions, while MLR (90.48%) and MLP (89.69%)

offered moderate performance. These findings emphasize the

effectiveness of kernel-based and ensemble techniques in

addressing various software defect prediction challenges.

Fig. 11 Average ranking across different datasets

5.1. Comparison with Standard Models

The tests demonstrate that the proposed approach

produces superior outcomes than those without preprocessing.

However, several models exist to preprocess the data

specifically used in software fault datasets. Thus, the

performance evaluation results were contrasted with the

standard models suggested in the field of research. The

suggested HDP approach is analyzed using seven software

fault prediction datasets, namely, KC1, KC3, MC2, MW1,

PC1, PC2, and PC4, using the Naive Bayes classifier model.

The AuC values obtained are presented in Table 5. Some

instance reduction models used for these analyses are

SMOTE, resampling, and Fisher Linear Discriminant

Analysis (FLDA) [26]. The models with higher AuC values

for each dataset are highlighted in bold.

Table 5. Performance comparison of HDP model using naïve bayes

classifier

Datasets SMOTE Resample FLDA
Proposed

HDP

KC1 0.84 0.78 0.85 0.862

KC3 0.82 0.85 0.87 0.881

MC2 0.72 0.74 0.73 0.781

MW1 0.78 0.78 0.89 0.878

PC1 0.68 0.67 0.91 0.721

PC2 0.79 0.86 0.91 0.882

PC4 0.86 0.88 0.83 0.896

From the analysis, the proposed model offers better

results for four out of seven datasets (KC1, KC3, MC2, PC4)

than other existing models in the field of research. However,

the model offers better results for the MW1 dataset, but the

average performance for dataset PC2 with the minority class

has minimal instances. For ease of comprehension, Figure 12

displays the results in Table 5 as a bar chart.

Fig. 12 Performance comparison of proposed HDP with existing model

As with the HFD, the proposed VFD model was also

analyzed with five software fault datasets, namely CM1, KC3,

MC1, MC2, and MW1, using the Random Forest classifier.

The obtained AuC values for different datasets are compared

with different feature selection algorithms, such as chi-square,

information gain, Pearson correlation, and hybrid feature

selection [24], and the values are listed in Table 6. Models

with higher AuC values for each dataset are highlighted in

bold.

Table 6. Performance comparison of VDP model using random forest

classifier

Datasets CM1 KC3 MC1 MC2 MW1 PC1

Chi-Squared 0.709 0.713 0.904 0.78 0.742 0.882

Information Gain 0.711 0.679 0.904 0.78 0.704 0.882

Pearson Correlation 0.719 0.695 0.98 0.738 0.704 0.882

Hybrid Feature

Selection
0.726 0.725 0.907 0.779 0.73 0.88

Proposed VDP 0.804 0.756 0.973 0.818 0.776 0.912

From the analysis, the proposed model offers better

results for five out of six datasets, including CM1, KC3, MC2,

MW1, and PC1, than the other existing models under

comparison. It acquired the first position in five trials.

Although the model seems to have a second position with an

AuC value of 0.973 for dataset MC1, the difference between

the first and second positions was minimal. Thus, the model

offers better AuC values for most of the datasets. The values

presented in Table 6 are presented as a line graph in Figure 13

for easy understanding.

88.87

90.48

89.69

92.24 92.14 92.17

91.42 91.48 91.49

92.22

87

88

89

90

91

92

93

NB MLR MLP SVM AB BAG ALR STK LMT RF

A
v
er

ag
e

V
al

u
es

 i
n

 %

Different Claasifiers

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

KC1 KC3 MC2 MW1 PC1 PC2 PC4
A

u
C

 V
al

u
es

Datasets

SMOTE Resample FLDA Proposed HDP

Yuvaraj K & Balaji N V / IJETT, 73(6), 318-335, 2025

331

Fig. 13 Performance comparison of proposed VDP with existing models

5.2. Comparison with State-of-the-Art Models
To evaluate the performance of the overall model, both

HDP and VDP were applied for dimension selections, and the

pre-processed dataset was then evaluated using the Naive

Bayes and C4.5 classifiers. The model has been experimented

with 12 datasets, and the outcomes are examined in relation to

those of other existing models that apply feature selection and,

for instance, selection with the aim of improving the input data

quality in the software fault detection field.

The existing algorithms used for the comparison are

Rough-KNN Noise-Filter Easy Ensemble (RKEE) [12],

Information Gain with Threshold-based Clustering (TC+IR)

[18], noise filtering and imbalance distribution removal

(NFIR) [19], information gain+ symmetric uncertainty+

random under-sampling (ISR) [11], Chi-Square+Symmetric

uncertainty+ Random under-sampling (CSR) [11], learnable

three-line hybrid feature fusion (LTHFFA) [44], and SHapley

Additive exPlanations (SHAP) and local interpretable model-

agnostic explanations (LIME) techniques [45].

Table 7 displays the AuC metric values for the proposed

and the existing models. The' None' model shows that no

preprocessing was applied to the datasets.

Table 7. Performance comparison of proposed model with existing models

Various Models
Different Datasets

CM1 MC2 MW1 KC1 KC3 PC1 PC3 PC4 PC5 Ecl.2.0 Ecl.2.1 Ecl.3.0

N
a

ïv
e

B
a

y
es

None 0.748 0.71 0.741 0.718 0.808 0.756 0.772 0.84 0.869 0.796 0.746 0.762

RKEE 0.776 0.688 0.809 0.809 0.784 0.809 0.803 0.839 0.954 0.823 0.766 0.780

TC+IR 0.777 0.648 0.781 - 0.823 0.785 - 0.81 0.847 0.799 0.773 0.784

NFIR - - - 0.635 0.669 0.552 0.668 - - - - -

ISR 0.767 0.685 0.778 0.81 0.786 0.767 0.809 0.841 0.951 0.83 0.766 0.78

CSR 0.730 0.662 0.771 0.787 0.805 0.712 0.803 0.839 0.932 0.825 0.761 0.781

Proposed 0.793 0.726 0.821 0.871 0.843 0.812 0.791 0.887 0.943 0.843 0.779 0.774

C
4

.5

None 0.506 0.562 0.493 0.536 0.605 0.650 0.589 0.752 0.472 0.664 0.586 0.637

RKEE 0.674 0.589 0.652 0.715 0.765 0.8 0.741 0.889 0.936 0.786 0.745 0.755

TC+IR 0.677 0.604 0.687 - 0.733 0.775 0.742 0.879 - 0.784 0.762 0.749

Proposed 0.682 0.623 0.729 0.731 0.798 0.764 0.793 0.864 0.921 0.808 0.781 0.783

R
F

NULL 0.583 0.579 0.518 0.546 0.583 0.606 0.633 0.692 0.672 0.604 0.604 0.693

KPCA 0.597 0.585 0.645 0.620 0.565 0.647 0.664 0.641 0.618 0.628 0.592 0.538

LLE 0.562 0.635 0.623 0.608 0.537 0.659 0.644 0.658 0.681 0.690 0.648 0.571

BAVSSA 0.559 0.638 0.707 0.650 0.674 0.665 0.704 0.623 0.679 0.616 0.678 0.565

SLLE 0.601 0.636 0.543 0.589 0.547 0.597 0.659 0.648 0.666 0.633 0.569 0.624

Kt-SNE 0.536 0.513 0.579 0.551 0.549 0.545 0.538 0.582 0.616 0.586 0.567 0.555

KS-LLE 0.531 0.623 0.592 0.641 0.507 0.511 0.518 0.630 0.658 0.593 0.531 0.545

KSC 0.527 0.640 0.507 0.610 0.527 0.555 0.520 0.694 0.687 0.673 0.642 0.619

LKB 0.654 0.683 0.708 0.710 0.602 0.670 0.667 0.687 0.712 0.672 0.678 0.644

LTHFFA 0.674 0.705 0.665 0.717 0.685 0.680 0.694 0.724 0.744 0.673 0.601 0.615

LIME &SHAP 0.680 0.706 0.721 0.560 0.710 0.670 0.680 0.692 0.672 0.604 0.604 0.693

Proposed 0.676 0.723 0.719 0.689 0.728 0.696 0.709 0.712 0.719 0.692 0.688 0.715

The other methods such as Kernel Principal Component

Analysis (KPCA), Locally Linear Embedding (LLE), Binary

Adaptive Variable Sparrow Search Algorithm (BAVSSA),

Sparse Local Linear Embedding (SLLE), KPCA and t-

Random Neighborhood Embedding (Kt-SNE), Enhanced

Stream Shape Learning Method (KS-LLE), KPCA+SLLE

with Correlation Analysis (KSC), Learnable Weight +Kernel

Features selected by BAVSSA (LKB) are obtained from Tang

et al. (2024). The 'None' model indicates no pre-processing is

applied to the datasets. The results revealed that all existing

models performed well in classifying fault-prone software

modules. The proposed model outperforms the Naive Bayes

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

CM1 KC3 MC1 MC2 MW1 PC1

CS

IG

PC

HFS

Proposed VDP

Yuvaraj K & Balaji N V / IJETT, 73(6), 318-335, 2025

332

classifier in nine of 12 datasets. In comparison, the C4.5

classifier and RF classifier outperform it in nine and seven out

of 12 datasets, with an increase in AuC values.

From the values presented in Table 7, when compared

with datasets without preprocessing, all the existing models

provide good results in classifying the fault-prone software

modules. However, the proposed model won nine out of 12

datasets with the Naive Bayes classifier. Its losses for three

datasets: PC3, PC5, and Eclipse 3.0. Thus, the average rate of

the results for the existing models, such as RKEE, TC+IR,

NFIR, ISR, CSR, and the proposed model is 80.3%, 78.3%,

63.1%, 79.8%, 78.4%, and 82.4%, respectively, with the

Naive Bayes classifier. Similarly, with the C4.5 classifier, the

proposed model wins for 9 datasets out of 12 datasets.

The average rates of the results for the RKEE, TC+IR,

and proposed models were 75.4%, 73.9%, and 77.3%,

respectively, with a C4.5 classifier. Thus, the increase in AuC

values with respect to the other classifiers ranged from 2.6%

to 5.2%. With extensive experimental and result analysis, it

can be seen that the proposed horizontal and vertical

dimension selection model offers the best results in many of

the experiments compared to most of the existing models.

However, there are some limitations to the proposed model.

The model provided average results with the lowest number

of instances in the minority classes, specifically when the

defect samples in the dataset were below 5%. In addition, the

model requires more time to select the features using a leave-

one-out cross-validated error rate, particularly when there are

significantly more features than instances in the datasets.

6. Discussion
The findings of this study show that the suggested VDP

and HDP approaches provide notable performance gains over

the existing approaches. The reason for this improvement is

that the model was able to fill a significant research gap that

has been mostly ignored in the literature. Most previous

studies have addressed feature selection or class imbalance

separately, but very few have offered a comprehensive

framework that addresses both issues simultaneously.

Many strategies have been developed in the field of

software fault prediction to address class imbalances. Some of

these strategies include resampling techniques (SMOTE,

resampling), whereas others have concentrated on feature

selection techniques such as chi-square tests or Information

Gain. The intricate interactions between these two critical data

quality issues are typically overlooked by these solutions,

which frequently concentrate on just one aspect of the issue:

either correcting imbalance or improving features. This

research gap is caused by the absence of a single framework

that deals with both issues simultaneously. The suggested

HDP and VDP techniques simultaneously address feature

redundancy and class imbalance, bridging this gap. Unlike

earlier research, this study provides a more comprehensive

solution to these data quality problems by integrating HDP

and VDP, offering a novel approach that simultaneously

addresses feature redundancy and class imbalance. This

work's unique combination of HDP and VDP offers a cohesive

solution that simultaneously enhances feature quality and

class balance. In contrast, previous approaches have proven

useful in resolving either class imbalance or feature selection

separately.

The existence of noise in the data and the irrelevant nature

of some features, which significantly influence prediction

accuracy, further complicate matters. These problems have

been addressed independently or insufficiently in many

current models, which can produce less consistent and

dependable outcomes. Through a comprehensive approach to

data preprocessing that addresses both vertical (feature-level)

and horizontal (instance-level) dimensions in a coherent

manner, the model balances the data and enhances the feature

set, which in turn improves classification performance and

stability. Earlier strategies, including conventional resampling

and feature selection techniques, concentrated on discrete

problems in the pipeline for data preprocessing. To improve

prediction accuracy and stability across various datasets, this

technique is innovative in simultaneously addressing feature

redundancy and class imbalance.

Through efficient instance reduction, the HDP technique

improves the class balance by guaranteeing that the most

pertinent instances are retained even in unbalanced datasets.

This contrasts current techniques, such as SMOTE and

resampling, which occasionally create synthetic instances or

eliminate valuable minority class instances, impairing model

performance and causing noise. Without adding unnecessary

bias, this approach guarantees that the data distribution

remains representative of real-world situations.

Similarly, the VDP technique enhances feature selection

by considering feature dependencies and their impact on the

model performance. Instead of choosing features based on

their worth, as with traditional feature selection approaches,

this approach considers classifier input to select features that

help the model perform better. This is where VDP shines,

compared to more conventional approaches, such as Pearson

Correlation or Information Gain, which are not particularly

good at capturing these interactions. Using HDP and VDP

together creates a stronger and more transferable model,

particularly when working with complicated and noisy data.

Better overall performance was achieved by methodically

handling class imbalance and feature redundancy using this

integrated strategy. This is supported by improved accuracy,

recall, precision, and AUC metrics across many datasets.

In addition to overcoming the limitations of the existing

techniques, the combined HDP and VDP approach offers a

flexible solution for managing feature redundancy and class

imbalance in complex datasets. This method distinguishes

Yuvaraj K & Balaji N V / IJETT, 73(6), 318-335, 2025

333

itself from previous state-of-the-art models by effectively

handling moderate to severe class imbalances and noisy data.

Moreover, the proposed model differentiates itself from

current methods, such as RKEE, NFIR, and LTHFFA, by

addressing class imbalance and feature selection

simultaneously within a single data preprocessing framework.

There is a notable gap in software failure prediction research

owing to the absence of an integrated preprocessing

methodology that handles both class imbalance and feature

selection. Although current methodologies have provided

valuable solutions to one part of the problem, these issues

frequently coexist and influence one another in real-world

applications. Closing this gap is essential to finding a

workable solution.

Because no prior work has offered an integrated approach

addressing class imbalance and feature selection within a

single framework, the comparison with established methods

such as RKEE, NFIR, and LTHFFA emphasizes the

originality of the suggested methodology. Therefore, the

proposed model provides a more workable answer for

software failure prediction in the real world.

It was also shown that earlier models were inaccurate and

that software fault prediction models can be made more

accurate, stable, and robust by considering both the vertical

and horizontal aspects of data preprocessing. The proposed

model outperformed state-of-the-art methods in various

performance parameters according to the testing. This is

particularly true in datasets with noisy attributes and

moderate-to-severe class imbalance.

7. Conclusion
This study presents a preprocessing model that optimizes

horizontal and vertical dimension selection, specifically for

software detection datasets employed in fault prediction. The

proposed model has two main phases. The first phase is the

HDP handling data imbalance by processing the instances

using SMOTE for oversampling and random under-sampling,

as well as the edited k-nearest neighbour rule for noise

removal. In the second phase, VDP selects significant

attributes using quadratic discriminant analysis. The

performance of the proposed preprocessing approach was

assessed experimentally using a variety of datasets and

metrics. The obtained results demonstrate the effective

performance of the anticipated model, with a mean accuracy

of 87.26% and 87.74% for the HDP and VDP models,

respectively. The average rates of error with RMSE and MAE

for HDP were 26.61% and 14.14%, respectively, and those of

VDP were 23.39% and 13.34%, respectively. The

comparative study ensures that the model achieves robust

performance in predicting faults in the software module with

an increase in the rate of AuC values from 2.6% to 5.2%.

Although the model offers better results for most experiments,

the results are insufficient when the number of instances in the

minority class is minimal. Thus, future work will focus on

offering a better solution with 100% accuracy and

implementing the model in a real-time environment for further

analysis. In addition, future research could explore integrating

HDP and VDP with other advanced methods, such as deep

learning models, to further enhance the prediction accuracy.

Further investigation into how data imbalance impacts the

performance of HDP and VDP could provide valuable insights

into the scalability of these techniques.

References
[1] Kateryna Alekseieva et al., “State Business Support Programs in Wartime Conditions,” Economic Affairs, vol. 68, no. 1s,

pp. 231-242, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[2] Florian Tambon et al., “Bugs in Large Language Models Generated Code: An Empirical Study,” Empirical Software

Engineering, vol. 30, no. 3, pp. 1-48, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[3] Musa Murtala Abubakar, and Bashiru Lawal, “Exploring the Potential Failure Modes in the Software Development Process,”

International Journal of Science for Global Sustainability, vol. 6, no. 3, pp. 94-104, 2020. [Google Scholar] [Publisher Link]

[4] Santosh S. Rathore, and Sandeep Kumar, “A Study on Software Fault Prediction Techniques,” Artificial Intelligence Review,

vol. 51, no. 2, pp. 255-327, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[5] Bahman Arasteh et al., “Sahand: a Software Fault-Prediction Method using Autoencoder Neural Network and K-Means

Algorithm,” Journal of Electronic Testing, vol. 40, no. 2, pp. 229-243, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[6] Ebubeogu Amarachukwu Felix, and Sai Peck Lee, “Predicting the Number of Defects in a New Software Version,” PloS

One, vol. 15, no. 3, pp. 1-30, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[7] Zhiqiang Li, Jingwen Niu, and Xiao-Yuan Jing, “Software Defect Prediction: Future Directions and Challenges,” Automated

Software Engineering, vol. 31, no. 1, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[8] Sushant Kumar Pandey, and Anil Kumar Tripathi, “An Empirical Study Toward Dealing with Noise and Class Imbalance

Issues in Software Defect Prediction,” Soft Computing, vol. 25, pp. 13465-13492, 2021. [CrossRef] [Google Scholar] [Publisher

Link]

[9] Jianxin Ge, Jiaomin Liu, and Wenyuan Liu, “Comparative Study on Defect Prediction Algorithms of Supervised Learning

Software Based on Imbalanced Classification Data Sets,” 2018 19th IEEE/ACIS International Conference on Software

http://doi.org/10.46852/0424-2513.1s.2023.26
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=State+business+support+programs+in+wartime+conditions&btnG=
https://ndpublisher.in/admin/issues/EAv68n1sz.pdf
https://doi.org/10.1007/s10664-025-10614-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bugs+in+large+language+models+generated+code%3A+An+empirical+study&btnG=
https://link.springer.com/article/10.1007/s10664-025-10614-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Exploring+the+Potential+Failure+Modes+in+the+Software+Development+Process&btnG=
https://fugus-ijsgs.com.ng/index.php/ijsgs/article/view/91
https://doi.org/10.1007/s10462-017-9563-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+study+on+software+fault+prediction+techniques&btnG=
https://link.springer.com/article/10.1007/s10462-017-9563-5
https://doi.org/10.1007/s10836-024-06116-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sahand%3A+a+software+fault-prediction+method+using+autoencoder+neural+network+and+k-means+algorithm&btnG=
https://link.springer.com/article/10.1007/s10836-024-06116-8#citeas
https://doi.org/10.1371/journal.pone.0229131
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Predicting+the+number+of+defects+in+a+new+software+version&btnG=
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229131
https://doi.org/10.1007/s10515-024-00424-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+defect+prediction%3A+future+directions+and+challenges&btnG=
https://link.springer.com/article/10.1007/s10515-024-00424-1
https://doi.org/10.1007/s00500-021-06096-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+empirical+study+toward+dealing+with+noise+and+class+imbalance+issues+in+software+defect+prediction&btnG=
https://link.springer.com/article/10.1007/s00500-021-06096-3
https://link.springer.com/article/10.1007/s00500-021-06096-3

Yuvaraj K & Balaji N V / IJETT, 73(6), 318-335, 2025

334

Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), Busan, Korea (South), pp.

399-406, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[10] Li Sheng Kong et al., “A Systematic Review on Software Reliability Prediction via Swarm Intelligence Algorithms,” Journal

of King Saud University-Computer and Information Sciences, vol. 36, no. 7, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[11] Wangshu Liu et al., “Empirical Studies of a Two-Stage Data Preprocessing Approach for Software Fault Prediction,” IEEE

Transactions on Reliability, vol. 65, no. 1, pp. 38-53, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[12] Saman Riaz, Ali Arshad, and Licheng Jiao, “Rough Noise-Filtered Easy Ensemble for Software Fault Prediction,” IEEE

Access, vol. 6, pp. 46886-46899, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[13] Riski Annisa, Didi Rosiyadi, and Dwiza Riana, “Improved Point Center Algorithm for K-Means Clustering to Increase

Software Defect Prediction,” International Journal of Advances in Intelligent Informatics, vol. 6, no. 3, pp. 328-339, 2020.

[CrossRef] [Google Scholar] [Publisher Link]

[14] Bartlomiej Wójcicki, and Robert Dabrowski, “Applying Machine Learning to Software Fault Prediction,” e-Informatica

Software Engineering Journal, vol. 12, no. 1, pp. 1-18, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[15] Jianming Zhan et al., “A Fuzzy C-Means Clustering-Based Hybrid Multivariate Time Series Prediction Framework with

Feature Selection,” IEEE Transactions on Fuzzy Systems, vol. 32, no. 8, pp. 4270-4284, 2024. [CrossRef] [Google Scholar]

[Publisher Link]

[16] Hemant Kumar, and Vipin Saxena, “Software Defect Prediction Using Hybrid Machine Learning Techniques: A

Comparative Study,” Journal of Software Engineering and Applications, vol. 17, no. 4, pp. 155-171, 2024. [CrossRef] [Google

Scholar] [Publisher Link]

[17] Abdullah Alsaeedi, and Mohammad Zubair Khan, “Software Defect Prediction using Supervised Machine Learning and

Ensemble Techniques: A Comparative Study,” Journal of Software Engineering and Applications, vol. 12, no. 5, pp. 85-

100, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[18] Jiaqiang Chen et al., “A Two-Stage Data Preprocessing Approach for Software Fault Prediction,” 2014 Eighth International

Conference on Software Security and Reliability (SERE), San Francisco, CA, USA, pp. 20-29, 2014. [CrossRef] [Google

Scholar] [Publisher Link]

[19] Ankush Joon, Rajesh Kumar Tyagi, and Krishan Kumar, “Noise Filtering and Imbalance Class Distribution Removal for

Optimizing Software Fault Prediction using Best Software Metrics Suite,” 2020 5th International Conference on

Communication and Electronics Systems (ICCES), Coimbatore, India, pp. 1381-1389, 2020. [CrossRef] [Google Scholar]

[Publisher Link]

[20] Chubato Wondaferaw Yohannese, Tianrui Li, and Kamal Bashir, “A Three-Stage Based Ensemble Learning for Improved

Software Fault Prediction: An Empirical Comparative Study,” International Journal of Computational Intelligence Systems,

vol. 11, no. 1, pp. 1229-1247, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[21] Yangtao Xue et al., “Nonlinear Feature Selection using Gaussian Kernel SVM-RFE for Fault Diagnosis,” Applied

Intelligence, vol. 48, no. 10, pp. 3306-3331, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[22] Santosh S. Rathore, and Sandeep Kumar, “A Decision Tree Logic Based Recommendation System to Select Software Fault

Prediction Techniques,” Computing, vol. 99, no. 3, pp. 255-285, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[23] Kaijie Xue, Jin Yang, and Fang Yao, “Optimal Linear Discriminant Analysis for High-Dimensional Functional Data,”

Journal of the American Statistical Association, vol. 119, no. 546, pp. 1055-1064, 2024. [CrossRef] [Google Scholar] [Publisher

Link]

[24] Lina Jia, “A Hybrid Feature Selection Method for Software Defect Prediction,” IOP Conference Series: Materials Science

and Engineering, vol. 394, no. 3, pp. 1-10, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[25] Wahaj Alkaberi, and Fatmah Assiri, “Predicting the Number of Software Faults using Deep Learning,” Engineering,

Technology & Applied Science Research, vol. 14, no. 2, pp. 13222-13231, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[26] Anum Kalsoom et al., “A Dimensionality Reduction-Based Efficient Software Fault Prediction using Fisher Linear

Discriminant Analysis (FLDA),” The Journal of Supercomputing, vol. 74, no. 9, pp. 4568-4602, 2018. [CrossRef] [Google

Scholar] [Publisher Link]

[27] Zhicheng Liu, and Aoqian Zhang, “Sampling for Big Data Profiling: A Survey,” IEEE Access, vol. 8, pp. 72713-72726,

2020. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/SNPD.2018.8441143
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparative+Study+on+Defect+Prediction+Algorithms+of+Supervised+Learning+Software+Based+on+Imbalanced+Classification+Data+Sets&btnG=
https://ieeexplore.ieee.org/abstract/document/8441143
https://doi.org/10.1016/j.jksuci.2024.102132
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+systematic+review+on+software+reliability+prediction+via+swarm+intelligence+algorithms&btnG=
https://www.sciencedirect.com/science/article/pii/S1319157824002210
https://doi.org/10.1109/TR.2015.2461676
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Empirical+Studies+of+a+Two-Stage+Data+Preprocessing+Approach+for+Software+Fault+Prediction&btnG=
https://ieeexplore.ieee.org/abstract/document/7182807
https://doi.org/10.1109/ACCESS.2018.2865383
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Rough+Noise-Filtered+Easy+Ensemble+for+Software+Fault+Prediction&btnG=
https://ieeexplore.ieee.org/abstract/document/8435900
https://doi.org/10.26555/ijain.v6i3.484
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improved+point+center+algorithm+for+K-Means+clustering+to+increase+software+defect+prediction&btnG=
https://ijain.org/index.php/IJAIN/article/view/484
http://dx.doi.org/10.5277/e-Inf180108
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Applying+machine+learning+to+software+fault+prediction&btnG=
file:///D:/Users/user/Downloads/wÃ³jcicki_applying_machine_1_2018.pdf
https://doi.org/10.1109/TFUZZ.2024.3393622
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+fuzzy+C-means+clustering-based+hybrid+multivariate+time+series+prediction+framework+with+feature+selection&btnG=
https://ieeexplore.ieee.org/abstract/document/10508476
https://doi.org/10.4236/jsea.2024.174009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Defect+Prediction+Using+Hybrid+Machine+Learning+Techniques%3A+A+Comparative+Study&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Defect+Prediction+Using+Hybrid+Machine+Learning+Techniques%3A+A+Comparative+Study&btnG=
https://www.scirp.org/journal/paperinformation?paperid=132442
https://doi.org/10.4236/jsea.2019.125007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Defect+Prediction+using+Supervised+Machine+Learning+and+Ensemble+Techniques%3A+A+Comparative+Study&btnG=
https://www.scirp.org/journal/paperinformation?paperid=92522
https://doi.org/10.1109/SERE.2014.15
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Two-Stage+Data+Preprocessing+Approach+for+Software+Fault+Prediction&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Two-Stage+Data+Preprocessing+Approach+for+Software+Fault+Prediction&btnG=
https://ieeexplore.ieee.org/abstract/document/6895412
https://doi.org/10.1109/ICCES48766.2020.9137899
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Noise+Filtering+and+Imbalance+Class+Distribution+Removal+for+Optimizing+Software+Fault+Prediction+using+Best+Software+Metrics+Suite&btnG=
https://ieeexplore.ieee.org/abstract/document/9137899
https://doi.org/10.2991/ijcis.11.1.92
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+three-stage+based+ensemble+learning+for+improved+software+fault+prediction%3A+an+empirical+comparative+study&btnG=
https://link.springer.com/article/10.2991/ijcis.11.1.92
https://doi.org/10.1007/s10489-018-1140-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Nonlinear+feature+selection+using+Gaussian+kernel+SVM-RFE+for+fault+diagnosis&btnG=
https://link.springer.com/article/10.1007/s10489-018-1140-3
https://doi.org/10.1007/s00607-016-0489-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+decision+tree+logic+based+recommendation+system+to+select+software+fault+prediction+techniques&btnG=
https://link.springer.com/article/10.1007/S00607-016-0489-6
https://doi.org/10.1080/01621459.2022.2164288
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimal+linear+discriminant+analysis+for+high-dimensional+functional+data&btnG=
https://www.tandfonline.com/doi/abs/10.1080/01621459.2022.2164288
https://www.tandfonline.com/doi/abs/10.1080/01621459.2022.2164288
http://doi.org/10.1088/1757-899X/394/3/032035
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+hybrid+feature+selection+method+for+software+defect+prediction&btnG=
https://iopscience.iop.org/article/10.1088/1757-899X/394/3/032035
https://doi.org/10.48084/etasr.6798
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Predicting+the+Number+of+Software+Faults+using+Deep+Learning&btnG=
https://www.etasr.com/index.php/ETASR/article/view/6798
https://doi.org/10.1007/s11227-018-2326-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+dimensionality+reduction-based+efficient+software+fault+prediction+using+Fisher+linear+discriminant+analysis+%28FLDA%29&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+dimensionality+reduction-based+efficient+software+fault+prediction+using+Fisher+linear+discriminant+analysis+%28FLDA%29&btnG=
https://link.springer.com/article/10.1007/s11227-018-2326-5
https://doi.org/10.1109/ACCESS.2020.2988120
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sampling+for+big+data+profiling%3A+A+survey&btnG=
https://ieeexplore.ieee.org/abstract/document/9068262

Yuvaraj K & Balaji N V / IJETT, 73(6), 318-335, 2025

335

[28] Rui Zhang, Feiping Nie, and Xuelong Li, “Self-Weighted Supervised Discriminative Feature Selection,” IEEE Transactions

on Neural Networks and Learning Systems, vol. 29, no. 8, pp. 3913-3918, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[29] Haihong Yu, Liangliang Zhang, and Zhanshan Li, “Self-Weighted Supervised Discriminative Feature Selection via

Redundancy Minimization,” IEEE Access, vol. 9, pp. 36968-36975, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[30] S. Sathya Bama, and A. Saravanan, “Efficient Classification using Average Weighted Pattern Score with Attribute Rank

based Feature Selection,” International Journal of Intelligent Systems and Applications, vol. 10, no. 7, pp. 29-42, 2019.

[CrossRef] [Google Scholar] [Publisher Link]

[31] S. Sathya Bama, M.S. Irfan Ahmed, and A. Saravanan, “Average Weight based Pattern Frequency for Performing Outlier

Mining in Web Documents,” International Journal of Emerging Technology and Advanced Engineering, vol. 7, no. 9, pp.

702-709, 2017. [Publisher Link]

[32] Tuong Le, “A Hybrid Approach using Oversampling Technique and Cost-Sensitive Learning for Bankruptcy Prediction,”

Complexity, vol. 2019, no. 1, pp. 1-12, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[33] Nitesh V. Chawla et al., “SMOTE: Synthetic Minority Over-Sampling Technique,” Journal of Artificial Intelligence

Research, vol. 16, pp. 321-357, 2002. [CrossRef] [Google Scholar] [Publisher Link]

[34] Herve Donald Teguim Kamdjou, Classification and Variable Selection Using Linear and Quadratic Discriminant Analysis,

Bachelor Thesis, University of Duisburg-Essen, 2016. [Online]. Available:

https://www.researchgate.net/publication/351664471_Classification_and_Variable_Selection_Using_Linear_and_Quadrati

c_Discriminant_Analysis

[35] Trevor Hastie, Jerome Friedman, and Robert Tibshirani, The Elements of Statistical Learning, Data Mining, Inference, and

Prediction, 2nd ed., Springer, New York, pp. 106-119, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[36] Stefan Hrouda-Rasmussen, Quadratic Discriminant Analysis, A Deep Introduction to Quadratic Discriminant Analysis

(QDA) with Theory and Python Implementation, Towards Data Science, 2021. [Online]. Available:

https://towardsdatascience.com/quadratic-discriminant-analysis-ae55d8a8148a/

[37] Scikit-Learn, Linear and Quadratic Discriminant Analysis, 2025. [Online]. Available: https://scikit-

learn.org/stable/modules/lda_qda.html

[38] PROMISE Software Engineering Repository, 2018. [Online]. Available: http://promise.site.uottawa.ca/SERepository

[39] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller, “Predicting Defects for Eclipse,” Third International Workshop

on Predictor Models in Software Engineering (PROMISE'07: ICSE Workshops 2007), Minneapolis, MN, USA, 2007.

[CrossRef] [Google Scholar] [Publisher Link]

[40] Martin Shepperd et al., “Data Quality: Some Comments on the NASA Software Defect Datasets,” IEEE Transactions on

Software Engineering, vol. 39, pp. 1208-1215, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[41] Thomas J. McCabe, “A Complexity Measure,” IEEE Transactions on Software Engineering, vol. SE-2, no. 4, pp. 308-320,

1976. [CrossRef] [Google Scholar] [Publisher Link]

[42] Maurice H. Halstead, Elements of Software Science (Operating and Programming Systems Series), Elsevier Science Inc,

United States, 1977. [Google Scholar] [Publisher Link]

[43] S. Sathya Bama, M.S. Irfan Ahmed, and A. Saravanan, “A Survey on Performance Evaluation Measures for information

Retrieval Systems,” International Research Journal of Engineering and Technology, vol. 2, no. 2, pp. 1015-1020, 2015.

[Google Scholar] [Publisher Link]

[44] Yu Tang et al., “A Software Defect Prediction Method based on Learnable Three-Line Hybrid Feature Fusion,” Expert Systems with

Applications, vol. 239, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[45] Susmita Haldar, and Luiz Fernando Capretz, “Interpretable Software Defect Prediction from Project Effort and Static Code Metrics,”

Computers, vol. 13, no. 2, pp. 1-23, 2024. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/TNNLS.2017.2740341
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Self-weighted+supervised+discriminative+feature+selection&btnG=
https://ieeexplore.ieee.org/abstract/document/8027207
https://doi.org/10.1109/ACCESS.2021.3062046
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Self-Weighted+Supervised+Discriminative+Feature+Selection+via+Redundancy+Minimization&btnG=
https://ieeexplore.ieee.org/abstract/document/9363176
https://doi.org/10.5815/ijisa.2019.07.04
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+Classification+using+Average+Weighted+Pattern+Score+with+Attribute+Rank+based+Feature+Selection&btnG=
https://www.mecs-press.org/ijisa/ijisa-v11-n7/v11n7-4.html
https://ijetae.com/Volume7Issue9.html
https://doi.org/10.1155/2019/8460934
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+hybrid+approach+using+oversampling+technique+and+cost-sensitive+learning+for+bankruptcy+prediction&btnG=
https://onlinelibrary.wiley.com/doi/10.1155/2019/8460934
https://doi.org/10.1613/jair.953
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SMOTE%3A+synthetic+minority+over-sampling+technique&btnG=
https://www.jair.org/index.php/jair/article/view/10302
https://doi.org/10.1007/978-0-387-84858-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Elements+of+Statistical+Learning&btnG=
https://link.springer.com/book/10.1007/978-0-387-84858-7
https://towardsdatascience.com/quadratic-discriminant-analysis-ae55d8a8148a/
https://scikit-learn.org/stable/modules/lda_qda.html
https://scikit-learn.org/stable/modules/lda_qda.html
http://promise.site.uottawa.ca/SERepository
https://doi.org/10.1109/PROMISE.2007.10
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Predicting+defects+for+eclipse&btnG=
https://ieeexplore.ieee.org/abstract/document/4273265
https://doi.org/10.1109/TSE.2013.11
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data+Quality%3A+Some+Comments+on+the+NASA+Software+Defect+Datasets&btnG=
https://ieeexplore.ieee.org/abstract/document/6464273
https://doi.org/10.1109/TSE.1976.233837
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Complexity+Measure&btnG=
https://ieeexplore.ieee.org/abstract/document/1702388
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Elements+of+Software+Science+%28Operating+and+programming+systems+series%29&btnG=
https://dl.acm.org/doi/abs/10.5555/540137
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+performance+evaluation+measures+for+information+retrieval+systems&btnG=
https://www.irjet.net/volume2-issue02
https://doi.org/10.1016/j.eswa.2023.122409
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+software+defect+prediction+method+based+on+learnable+three-line+hybrid+feature+fusion&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417423029111
https://doi.org/10.3390/computers13020052
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Interpretable+software+defect+prediction+from+project+effort+and+static+code+metrics&btnG=
https://www.mdpi.com/2073-431X/13/2/52

