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Abstract - Deep Learning Models (DLMs) have become indispensable in Deep Image Recognition Systems (DIRS) due to their 

ability to automatically extract intricate features and maintain high performance over time. Despite their effectiveness, DLMs 

are intrinsically susceptible to gradient-based attacks, in which adversaries subtly alter input data to trick the model and produce 

inaccurate predictions. Adversarial Machine Learning (AML), which investigates diverse attack strategies and develops 

countermeasures, has yielded numerous techniques. However, advanced gradient-based attacks remain a persistent challenge, 

underscoring the need for more effective detection and mitigation strategies. This paper presents the Gradient-based Adversarial 

Miniature Attack (GMA), a sophisticated gradient-based attacking technique that thoroughly assesses the resilience of DIRS 

models against hostile assaults. This research suggests the Model Integration Approach (MIA), a defense training approach 

significantly improving DIRS resilience to combat GMA and other well-known threats. According to experimental results, MIA 

has a remarkable 99.71% detection accuracy, indicating its potential as a strong countermeasure. This work lays a solid 

foundation for advancing defenses against sophisticated gradient-based adversarial attacks while fostering innovation in 

developing secure and reliable DIRS models. 

Keywords - Computer vision, Security, Adversarial Machine Learning, Advanced threat detection, Robust Deep Neural Network. 

1. Introduction 
Deep Image Recognition Systems (DIRS) are a key 

application area for a variety of image identification tasks, 

including autonomous traffic recognition [1], fingerprint 

spoof detection [2], cancer cell categorization [3], and image 

classification [4]. These applications actively automate their 

duties using Deep Learning Models (DLMs). While some 

DIRS applications use them to categorize inputs as benign or 

malignant, others concentrate on anomaly identification. 

DIRS takes images as inputs, processes them, and produces 

outputs based on the choices made by the underlying DLMs. 

Convolutional Neural Networks (CNNs), VGG, and ResNet 

architectures are some of the most popular models for 

accomplishing these goals. However, numerous researchers in 

the AML field have demonstrated that these DLMs are 

susceptible to adversarial poisoning assaults.  

This research area aims to identify the weaknesses in the 

current DLMs and provide suitable, strong defenses. In 

keeping with this objective, numerous studies have shown 

how susceptible DLMs are to various adversarial poisoning 

assaults, including the Fast Gradient Sign Method by Ian 

Goodfellow et al. (FGSM) [5], Carlini and Wagner (CW) [6], 

and Projected Gradient Descent (PGD) [7]. The specified 

attacks aim to manipulate the pre-trained DLMs' decisions, 

resulting in incorrect categorization or prediction outcomes. 

For instance, a DIRS model under adversarial attack may 

mistakenly identify a cancerous cell as benign. It may cause 

an incorrect diagnosis of the illness and can trigger fear. 

Considering this, research demonstrates that there is every 

chance to mislead the DLMs using sophisticated threat 

models. Several adversarial poisoning attacks' effects on their 

target DLMs in diverse application areas were mentioned in 

[8-16].  

This situation raises significant security issues with 

DLMs in their respective application domains, particularly in 

the cyber security and healthcare industries, where protecting 

sensitive data from adversarial attacks is essential. Numerous 

studies have produced strong defense and detection techniques 

against a variety of adversarial attacks as a result of the 

developments in adversarial machine learning. Defensive 

distillation, a technique developed by N. Papernot et al. [17], 

uses two feed-forward deep networks (a teacher model and a 

student model) to defend against FGSM attacks successfully. 

Despite achieving broad defense capacity, this approach could 
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not fend off stronger adversarial attacks (CW) proposed by 

Carlini and Wagner et al. [18]. The denoising [19] defense 

technique effectively identifies FGSM and PGD. However, it 

has several drawbacks, including a gradient obfuscation issue, 

a failure to respond to sophisticated attacks, and a decline in 

clean accuracy.  Kuzlu M et al. [20] developed a hybrid 

approach that counteracts FGSM, PGD, Momentum Iterative 

Method (MIM), and Basic Iterative Technique (BIM) by 

combining distillation and adversarial training strategies.  

This approach has limitations against unknown attacks 

such as CW, yet it provides significant compute costs for 

creating different adversarial cases for retraining. Using the 

consistency checking method [21] to identify adversarial 

examples is effective against FGSM and PGD, but advanced 

attacks and CW are still undetectable. Hardware acceleration 

parameters are used for detection in GPU monitoring [22], but 

this requires a lot of processing power, which is not ideal. 

Although GAN-based defenses [23, 39] are efficient methods 

for identifying different types of attacks, their intricate 

structures make it challenging to implement and maintain 

them in actual scenarios. The most widely used and successful 

method for identifying known attack routes is adversarial 

training [24].  

At the same time, it has drawbacks, such as the production 

of adversarial data and vulnerability to invisible attacks. 

Numerous hybrid approaches have been developed by [20, 25, 

26, 29] that work well for particular assault areas. For 

academics interested in this area, the adaptability of current 

defenses to hidden flaws remains an open problem. The 

following is a summary of the difficulties that the most 

advanced defense techniques encounter, taken from the recent 

literature: 

• The defense or detection techniques that have been 

outlined are still vulnerable to unnoticed or very 

sophisticated hostile attacks. 

•  Even with the use of sophisticated training architectures 

and many models for training, specific techniques are still 

unable to identify CW attacks and other sophisticated and 

hidden attack routes. 

• The main issue with adversarial training, the best defense 

technique available today, is that it requires much 

computing to generate adversarial examples. It is time-

consuming, particularly for iterative methods like CW 

examples. 

• Various hybrid techniques lead to a loss of clean accuracy 

rates, indicating that the defense or detection model 

cannot identify benign samples, lowering the model's 

efficiency. 

To protect against such sophisticated attack vectors, 

searching for hidden vulnerabilities in DLMs, evaluating 

defense models regularly, and creating robust techniques and 

defense models are imperative.   

This study aims to solve two issues that state-of-the-art 

defense techniques have concerning DIRS. 

1. A robust assessment of defense strategies against an 

advanced adversary attack that is not yet discovered.    

2. To lower the number of adversarial examples needed for 

training.   

In this regard, this paper presents the significant 

contributions of the study as follows: 

1. Design and implement a novel, advanced, Gradient-based 

adversarial Miniature Attack (GMA). 

2. Perform robustness evaluation of the state-of-the-art 

defense models for DIRS applications against GMA 

attacks.  

3. Propose a novel training framework - Model Integration 

Approach (MIA) to train GMA and other state-of-art 

attacks (PGD, FGSM, CW). 

4. Evaluate the effectiveness of the proposed MIA method 

rigorously against state-of-art methods (bilateral 

adversarial training [40],  fast adversarial training 

[32], convolutional filter statistics [31], and GAN-based 

training [39]).  

5. The GMA attack is an unseen and advanced attack on the 

existing DIRS defense models. The novelty of the attack 

lies in the miniature perturbations used for the attack. The 

proposed training method helps the MIA defense model 

detect the GMA, PGD, FGSM, and CW attacks efficiently 

with higher accuracy rates. The novelty lies in training the 

defense model in phases, and thus MIA lessens the 

number of adversarial examples essential for training. 

MIA efficiently withstands advanced adversarial attacks 

like GMA, PGD, FGSM, and CW, enhancing the DIRS 

system's robustness and ensuring dependable 

performance in adversarial environments. 

The study is segregated and presented in different 

sections of this paper. Section 2 gives background information 

in brief. Section 3 presents the GMA attack and related 

analysis techniques. Section 4 describes the suggested training 

approach - the Model Integration Approach (MIA). Section 5 

provides experimentation details. Section 6 discusses the 

experimental results. The conclusions are drawn in section 7. 

2. Background 
2.1. Gradient Learning and Gradient Optimization 

Gradient optimization is one of the steps involved in the 

DLM training process. Figure 1 depicts the DLM training 

process involved in learning patterns of ‘image 3’ and 

recognizing its corresponding ‘label 3’ for a multiclass 

handwritten image recognition classification problem. The 

input image undergoes pre-processing steps like feature 

mapping, activating convolutional layers, max_pooling, and 

flattening.  
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Fig. 1 The process of building a deep neural network to solve a 

multiclass classification problem using an image of handwritten 

numbers 

Thus, pre-processed information is fed to the neural 

network nodes, where gradient learning happens. Gradient 

learning helps activate appropriate nodes through the network 

layers that could lead the model to predict the corresponding 

label accurately. Gradient learning is done by assigning two 

model parameters - weights (𝑤) and bias (𝜃). Initially, these 

parameters are assigned with random values. Then, DLM 

computes a decision function shown in Equation 1 iteratively 

to choose the best parameters of 𝑤 and 𝜃 that produce the best 

probability distribution values for predicting the appropriate 

class label for an input image. 

𝑦 = 𝑓(𝑥) =   𝑤. 𝑥 +  𝜃 (1) 

The function f(x) to iteratively calculate and update 

values of 𝑤 and 𝜃 is called ‘gradient optimization.’ A metric 

called cost function ‘J’ measures the differences between the 

actual and expected model outcomes. Adjusting model 

parameters, J acts as a feedback loop and guides the 

optimization process. Gradient optimization is a complex and 

iterative process. It involves iteratively adjusting weights (𝑤) 

to minimize J, with gradients computed to determine the 

direction and magnitude of weight updates.  

This process enables the model to converge toward 

optimal parameters that minimize J progressively. DLM 

models often employ gradient-optimization methods such as 

SGD, Adam, RMSProp, and Adagrad [30] to traverse the 

optimization landscape and guarantee convergence. These 

methods provide stable and dependable model performance, 

serving as the foundation of contemporary deep-learning 

training pipelines [31]. Understanding gradient optimization 

is relevant because the gradient-based attacks target the 

learned gradients of the DLM and generate appropriate 

gradient-based attacks to deceive the DLMs widely. 

2.2. Gradient-based Adversarial Attack 

The gradient-based adversarial attacks target the learned 

gradients of the model and deliberately manipulate them such 

that the model under attack fails to recognize the correct label 

and makes false predictions.  

 
Fig. 2 Gradient optimization dynamics of the DNN model under                   

(a) Normal, and (b) Gradient-poisoning attack conditions 

Figure 2 displays the gradient propagation under two 

extremes. 1. under normal condition shown in Figure 2(a) and 

2. under attack condition shown in Figure 2(b). Under normal 

conditions, the model used random values to establish the 

model weights 𝑤, and gradient descent refines them 

iteratively. The procedure guides (𝑥) in the direction of the 

global minimum, 𝐽min(𝑤) in steps, as seen in Figure 2(a). This 

approach guarantees that the model's choices align with its 

stated goal. Under attack conditions, gradient ascent is 

initiated by purposefully manipulating the gradients to move 

in the other direction using attack samples. As seen in Figure 

2(b), this modification directs the optimization process toward 

a global maximum, 𝐽max(𝑤), which in turn causes the decision 

function to perturb to 𝑓′(𝑥). As a result, the model's behavior 

deviates from its intended purpose, compromising its accuracy 

and dependability. 

2.3. Adversarial Training (AT) 

AT is one of the defense methods that enhance the 

robustness of DLMs against adversarial attacks. The initial 

step in this process is to prepare a training dataset that includes 

clean (original) samples and adversarial examples using 

specific attack algorithms, such as the PGD or FGSM. Since 

adversarial datasets are typically not publicly available, these 

examples must be generated synthetically. Each sample-

whether clean or adversarial-must be correctly labeled with its 

corresponding class, and the combined trainset is fed for 

model training and promotes adversarial robustness. 

Following the training phase, the model is expected to 

effectively identify and mitigate adversarial inputs intended to 

compromise its performance. A plethora of adversarial 

training methods have been developed to address various 

adversarial situations, such as domain-specific [33-40], 

transferability nature [41], handling data and model 

complexities [42-45], etc. 

3. The Gradient-Based Miniature Attack (GMA) 

Procedure 
The GMA is an advanced adversarial attack technique to 

gently tamper with the gradients of a deep learning model in 

order to impair the model's overall performance. First, the 

attack generates GMA samples inducing miniature 

perturbations, as described in Algorithm 1. The training 
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dataset is then purposefully supplemented with these 

samples.  What distinguishes GMA from traditional attacks-

such as CW, PGD, and FGSM-is its use of miniature 

perturbations.  

Miniature Perturbations: The miniature perturbations are 

the truncated sizes used to craft GMA attack samples. These 

are significantly smaller than those typically employed in 

other standard attacks (sizes used are 3, 2, 1, 2.7, 1.5) but are 

sufficient to degrade the performance of deep learning 

classifiers.  Miniature perturbations are denoted by Tr(ϵ), a set 

of unique perturbation values computed as shown in Equation 

2. 

𝑇𝑟(𝜖)  =  V𝑛 ∗ e−i  | V𝑛 ∈ [0.1, 3.0], e−i ∈ [1,6] (2) 

Where V = {0.1, 0.5, 1.0, 2.0, 3.0}, n denotes the index 

number of elements in V (starting from 1), and e-i represents 

the exponential term, with 'i' taking the values from the set 

{1,2,3,4,5,6}. For instance, if n=1 and i=1, the truncated 

perturbation size Tr(ϵ) used to craft the attack sample would 

be V1*e-1 = 0.1*e-1. Each value obtained after computing Vn*e-

i is in miniature set Tr(ϵ) used for generating synthetic GMA 

adversarial examples as defined in algorithm 1. The maximum 

and minimum values obtained for sets for 'V' and 'i' are 3e-1 

and 0.1e-6. These are chosen based on the attack success rate, 

the significant effect of perturbation size on the target model, 

and the visible similarity between the original and adversarial 

images. The values beyond the above-mentioned limits have 

little effect on model accuracy, are visibly distinguishable, and 

are discarded for this study. The fundamental premise of the 

GMA is that the attacker has complete access to the dataset 

and DLM in order to optimize the attack plan 

successfully.  Even though these perturbations are small, they 

are efficient enough to skew the model's gradient calculations, 

which results in notable errors during inference and training. 

These are subtle enough to evade detection by most existing 

DIRS defense models yet powerful enough to skew model 

learning dynamics and degrade classification accuracy. As a 

result, models trained with GMA-contaminated data may 

produce unreliable predictions, posing serious risks to the 

reliability, integrity, and availability of the DIRS system. 

GMA's creative use of tiny perturbations provides a flexible 

method for researching sophisticated adversarial 

vulnerabilities in various DLMs, bridging the gap between 

stealth and attack effectiveness. 

3.1. Attack Formulation 

Gradient-based Miniature attack leverages the gradients 

of the loss function for the miniature data to craft GMA 

samples. Let: 

• Training data: 𝐷 = {(𝑎𝑖 , 𝑏𝑖)}𝑖=1
𝑛   

• GMA Data: 𝐷𝑔 = 𝐷 ∪ {(𝑎𝑔, 𝑏𝑔)}, where (𝑎𝑔, 𝑏𝑔) are the 

GMA samples. 

• Model Parameters: θ, learned by minimizing the training 

loss L(θ, Dg). 

• Target Data: (at,bt), which the attack aims to misclassify. 

The attack algorithm solves the following bi-level 

optimization problem: 

𝑚𝑎𝑥
(𝑎𝑔, 𝑏𝑔)𝐿𝑔𝑎𝑚𝑎(𝜃∗, (𝑎𝑡 , 𝑏𝑡)) (3) 

subject to: 𝜃∗ =
𝑎𝑟𝑔𝑚𝑖𝑛

𝜃
𝐿(𝜃, 𝐷 ∪ {(𝑎𝑡 , 𝑏𝑡)}) where, 

𝐿𝑔𝑎𝑚𝑎  is the attack-specific loss (e.g., causing 

misclassification of (at,bt)), and L is the model's standard 

training loss (e.g., cross-entropy or MSE).  

To solve the bi-level optimization problem, Gradient-

based miniature attacks approximate the impact of the GMA 

sample (ag,bg) on the model's performance. This involves 

computing meta-gradients. 

3.1.1. Computing the Meta-Gradients 

The impact of (ag,bg) on the target loss LGMA can be 

computed as: 

∂Lgama

∂(ag,bg)
=

∂Lgama

∂θ∗ ⋅
∂θ∗

∂(ag ,bg)
, (4) 

Where: 

• 
𝜕𝐿𝑔𝑎𝑚𝑎

𝜕(𝑎𝑔,𝑏𝑔)
: Gradient of the attack loss with respect to model 

parameters. 

• 
𝜕𝜃∗

𝜕(𝑎𝑔,𝑏𝑔)
: Influence of GMA samples on the model 

parameters. 

Substituting back, the attack algorithm adjusts (ag,bg) 

iteratively as: 

(𝑎𝑔, 𝑏𝑔)  ← (𝑎𝑔, 𝑏𝑔)  + 𝜂 ⋅
𝜕𝐿𝑔𝑎𝑚𝑎

𝜕(𝑎𝑔 ,𝑏𝑔)
 (5) 

Where ‘η’ is the learning rate for crafting the GMA 

samples. 

3.2. GMA Synthetic Data Generation Procedure  

Algorithm 1 outlines the procedure for generating 

gradient-based miniature attack datasets synthetically. The 

algorithm uses miniature perturbations of varying intensities 

drawn from a predefined list of perturbation sizes (Tr(ϵ)) to 

the training dataset. Starting with initial parameter settings, it 

generates attack samples for each perturbation size and stores 

them in the variable GMA_ds. The algorithm cycles through 

five perturbation levels (n = 0 to 4) for up to six intensity levels 

(i = 1 to 6). The function grad_attack uses the Attack samples 

thus generated to perform a GMA attack on the targeted model 

(M). This algorithm produces a GMA attack dataset 

containing miniature or GMA attack samples. 
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Algorithm 1: Synthetic GMA Attack Data Generation 

Input: ML model(M), original dataset (D), miniature 

perturbation sizes (Tr(ϵ)). 

            

Output: GMA_ds  #Gradient-Poisoning miniature attack 

dataset (GMA dataset) 

Begin Procedure 

1. Parameter initialization   

       values: n=0, i=1 then perturbation value = V0e-1 as per 

(3). 

2. while i<=6 && n<=4  

3. Loop 

4. attack_ds :=  grad_attack(  

5.                         model = M,  

6.                         ds = train_set,  

7.                         Perturbation_size = Tr(ϵ)n,  # value of 

Tr(ϵ) at index n 

8.                         target=none) 

9. GMA_ds = GMA_ds.append(attack_ds) 

10. if (n >4) then i++, n=0, repeat from step 3 

11. else  if i==6 exit loop  

12. else  n++,  repeat from step 3            

13. End loop 

14. return   GMA_ds 

End Procedure 

 

3.3. GMA Efficiency Analysis Procedure  

The GMA attack samples must satisfy the following two 

necessary and sufficient conditions for a successful attack. 

1. The class label Y’ of the GMA sample data X′  must not 

be the actual class label X, i.e., C(X) as shown in Equation 

6. 

Y’ =  f’(X’)  =  (x’ +  Tr(ϵ))  +  b’  ! =   C(X) (6) 

Where, 

Y′ : Class label predicted by the attacked model. 

f′(X′) : Function learned by the model under attack. 

x′+Tr(ϵ) : Adversarial sample generated with added     

                  truncated Tr(ϵ) perturbations. 

b′ : Bias vector. 

C(X) : True class label of the original sample X. 

2. The generated GMA attack samples X′  of miniature 

perturbation sizes Tr(ϵ) must closely resemble its original 

counterpart, X. 

These two conditions ensure that the perturbed sample X′, 

crafted using Tr(ϵ), induces the attacked model to misclassify 

it while maintaining high similarity to the original sample X. 

Algorithm 2 outlines the procedure for a GMA attack and 

analyzes if the attack meets the first condition mentioned 

above. This algorithm assesses the robustness of a deep 

learning model against a GMA attack. It begins by calculating 

the baseline accuracy (Bacc) of the clean model and establishes 

thresholds for best-case accuracy (>80%) and worst-case 

accuracy (<50%) to classify the model's performance. The 

model is then exposed to attack samples from the GMA_ds 

dataset in an iterative process, with the accuracy recorded after 

each attack (denoted as Fool(M)acc).  

The attack function, using equations (3), (4), and (5), 

learns the gradient of the model (M) and performs gradient 

poisoning. If the post-attack accuracy falls below the worst-

case threshold, the attack is considered successful, and the 

algorithm returns a value of 1.  

If the attack does not succeed after a maximum of three 

iterations, the algorithm returns 0. The final output, 

Fool(M)acc, quantifies the model's vulnerability to adversarial 

perturbations, providing an essential metric for evaluating the 

DLMs' resilience under attack conditions. 

Algorithm 2: GMA attack Analysis Procedure 

Input: Deep neural network (M),  GMA_ds.  

            

Output: Fool(M)acc   #Target model accuracy under GMA 

attack. 

 Begin Procedure 

1. Bacc = Baseline classification accuracy of clean 

model (M) 

2. Fooled(M)acc = Fooled model accuracy # DLM 

accuracy after attack 

3. Determine the case behavior of model (M) 

1. Best case accuracy when (M)𝓪𝓬𝓬  > 80%  

2. Worst-case accuracy when (M) 𝓪𝓬𝓬   < 

50%  

4. i = 1 

5. Loop 

6.         Attack (M) using GMA_ds     

7.         Fool(M)acc = Attack (M, GMA_ds) 

8.         Check if the attack is a success or failure 

1. If Fooled(M)acc = worst case accuracy  

 flag = 1                                # Attack 

success 

2. else flag = 0                          # Not a 

successful attack 

3. i++                      

9. if i<=3i then continue in the loop else, return the 

flag and exit from a loop 

10. End Loop  

11. Return Fool(M)acc 

  End Procedure 

 

Visual analysis is performed to ascertain whether there is 

a discernible similarity between legitimate and equivalent 

GMA adversarial images. This analysis was done manually to 

verify whether the output images satisfied our second 

necessary condition. 
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Fig. 3 The proposed model integrated approach MIA defense model 

overview diagram 

4. The proposed Model Integration Approach 

(MIA) 
The model integration approach (MIA) is a novel, flexible 

adversarial training framework. MIA strives to reduce the 

number of adversarial examples required for training. Figure 

3 shows the MIA method overview. The defense model (MIA) 

is trained on the augmented dataset containing clean and 

adversarial examples. The trained MIA model detects the 

adversarial attack when an adversary tries to attack the MIA 

defense model. The MIA concept applies to training any 

defense model that wants to reduce the requirement for 

generating several adversarial images. This paper proposes the 

MIA training framework rather than the defense model 

because MIA concentrates on novel training techniques 

suitable for training any other defense models. The novelty of 

this approach lies in training the defense model by 

sequentially and intelligently integrating two training 

methods-Enhanced Adversarial Training (EAT) and the EAT 

integrated Ensemble training. The MIA effectively enhances 

robustness while reducing training complexities, including the 

need for complex model architectures, many attack samples, 

and reliance on third-party DNNs.  

4.1. MIA Training Framework 

The hardcore MIA is involved in training the defense 

models. It trains the defense model in two phases.  

The first phase applies Enhanced Adversarial Training 

(EAT), and the second phase applies hybrid model integration, 

i.e., EAT-trained Ensemble training.  

Fig. 4 MIA training details, including EAT and EAT-integrated Ensemble model training 
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The MIA method involves four steps: 1. Augmented data 

preparation, 2. Enhanced adversarial training, 3. Bootstrap 

dataset preparation, and 4. EAT-integrated ensemble training. 

Figure 4 illustrates a detailed view of the training phases 

involved in the MIA training framework.   

4.1.1. Augmented Data Preparation 

An augmented dataset is composed of both original and 

attack data samples. The clean dataset contains the original 

data records, each labeled with predefined class labels, while 

the attack dataset consists of adversarial data samples and their 

manually assigned labels. For example, the clean image 

samples in Figure 4 are labeled with classes such as C1 to C9 

in the case of MNIST, whereas the GMA image samples are 

labeled as C10 as the 10th class label added to the dataset. 

4.1.2. Enhanced Adversarial Training (EAT) Procedure 

The EAT process involves several cycles of training the 

defense model over multiple cycles using an augmented 

dataset. In the first training cycle, a small proportion of 

adversarial examples (e.g., 15%) are incorporated into the 

augmented dataset. This initial training cycle is represented by 

iteration 1, as indicated by the green and blue arrows in Figure 

4. In subsequent cycles (iterations 2+), the augmented dataset 

is progressively enhanced by adding increasing percentages of 

adversarial examples with each consecutive training cycle, as 

shown by the pink arrows. Iteratively adding proportionate 

adversarial examples to the augmented dataset in each 

iteration and training on the updated 'augmented dataset' until 

the model achieves optimal performance (i.e., an accuracy 

greater than 80%)  is called Enhanced Adversarial Training.  

This approach ensures that the defense model is exposed 

to a sufficient number of adversarial examples, allowing it to 

learn the attack patterns effectively. Once the EAT-trained 

defense model has sufficiently learned the adversarial image 

patterns, it is pushed forward for integration with the MIA 

training process. 

4.1.3. Bootstrapped Dataset Preparation 

The source of the bootstrapped datasets is the augmented 

dataset of Training phase-1 that has been enhanced iteratively 

with the increased proportion of adversarial examples where 

the EAT-trained model attains its optimal performance. The 

necessary percentage of adversarial cases must be present in 

the expanded dataset for the second training phase. The 

expanded dataset with 40% adversarial images is selected in 

this study, shown in Figure 4 (the results section explains 

why). 

The expanded dataset is now divided into n bootstraps, 

each with "m" samples. Figure 4 only displays three 

bootstrapped sets and the accompanying EAT-trained models 

for simplicity's sake. Both hostile and valid samples are 

included in the bootstrapped datasets. The EAT-integrated 

defensive model uses these datasets as input.   

4.1.4. EAT Integrated Ensemble Training 

The EAT-integrated ensemble model intellectually 

integrates the EAT-trained models as weak learners into the 

ensemble model to enhance the performance of the previously 

trained EAT defense models in training phase 1, as shown in 

Figure 4. The bootstrapped datasets are used to train the EAT-

integrated ensemble model. The ensemble model used here is 

the bootstrap aggregation ensemble technique, and hence, the 

datasets were bootstrapped in the earlier step. Each weak 

learner (EAT model) is a voting classifier for the classification 

task. Each classifier casts a vote for its predicted outcome, and 

the final prediction is determined by aggregating all votes, 

with the outcome receiving the highest number of votes. This 

aggregated result serves as the final output of the EAT-

integrated Ensemble model, also named the MIA defense 

model. The performance of the trained defense model is 

subsequently evaluated on test datasets. 

5. Experimental Setup 
The experiments were conducted at the cyber security lab 

at GITAM, which is deemed to be a university in India. The 

hardware requirements include a Windows 11 pro for 

workstation, DELL Precision 7820 tower XCTO, Processor: 

Xeon Bronze, 3106 CPU @ 1.70 Ghz, 128 GB DDR4 RAM, 

ROM: 2TB PCLe NVME SSD, GPU: NVIDIA RTX A6000 

48 GB. The software requirements are Spyder IDE in the 

Anaconda environment and several inbuilt packages of 

Python, sklearn, clever hands, and matplotlib for data 

gathering, analysis, synthetic data generation, and 

visualization purposes. 

5.1. Data Collection 

This research study conducted experiments on image 

recognition data, utilizing both original image samples and 

synthetically generated adversarial attack samples. The 

original image samples were obtained from two benchmark 

datasets: MNIST [23] and Fashion-MNIST [24]. The MNIST 

dataset consists of 60,000 grayscale images of handwritten 

digits (0-9) with a resolution of 28×28 pixels, including 

50,000 training samples and 10,000 testing samples. In 

contrast, Fashion-MNIST contains images of various clothing 

items, such as skirts and shoes, categorized into ten distinct 

classes.  

 
(a) MNIST images 
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(b) Fashion-MNIST images 

Fig. 5 The image sample collection of two benchmark datasets: 

(a)MNIST, and (b) Fashion-MNIST datasets. Each dataset collection 

represents images belonging to 10 classes, along with their labels 

displayed below each image. 

Figure 5 displays the images of (a) MNIST, and (b) 

Fashion-MNIST for all 10 classes, along with their class labels 

below each image. 

5.2. Defense Model Architectures 

The DLMs used in this study were custom-built, 

lightweight, and sequential, with varying architectural 

hyperparameters, including the number of convolutional and 

dense layers, weight initialization methods, activation 

functions at the input and output layers, the dimensions of 

input, max-pooling, and stride layers. The defense models 

employed sparse categorical cross-entropy loss functions and 

Adam optimization techniques. The detailed specifications are 

provided in Table 1. For the EAT-Training phase-three DNN 

models were employed: EAT Model 1, EAT Model 2, and 

EAT Model 3. The EAT-integrated Ensemble training phase 

utilizes the bootstrap aggregation ensembled model. The 

EAT-integrated Ensemble model integrated the EAT model-

1, EAT model-2, and EAT-model-3 as weak learners for 

further training. A target DNN model is utilized for attack 

analysis and comparative evaluation.    

Table 1. The design specifications of model architectures designed for target and defense models 

Model 

Configuration 

Target Model 

(DNN) 
EAT Model1 EAT Model2 EAT Model3 

EAT-Integrated 

Ensemble Model 

Type Sequential DNN 
Sequential 

DNN 
Sequential DNN Sequential DNN 

Ensembled voting 

classifiers 

Convolutional 

layer(s) 

1, 32 filters 

Size 3x3 

1, 32 filters 

Size 3x3 

1, 32 filters 

Size 3x3 

2, 64, 32 filters 

Size 3x3 

EAT model 1, 2, and 3 

convolutions, 

respectively 

Maxpool / 

Stride 
1, 2x2, 1 1, 2x2,1 2, 2x2,1 2, 2x2,1 

EAT model 1, 2, and 3 

max pool layers, 

respectively 

Dense layer(s) 1, 100 units 1, 100 units 3, 100 units 3, 100 units 

EAT model 1, 2, and 3 

dense layers, 

respectively 

Weight 

initialization 
he_uniform he_uniform he_uniform he_uniform he_uniform 

Activation 

function 

RELU for input 

layers, 

softmax for output 

layer 

GELU input, 

softmax output 

GELU input, 

softmax output 

GELU input, 

softmax output 

RELU, GELU input, 

softmax output 

Table 2. Different parameters of the test datasets used for implementation and evaluation of the proposed MIA method on various defense models 

Original or 

clean dataset 

name 

Deep Neural  

Network(s) 

Attack 

algorithm 

type 

Perturbation size used 

to create an attack 

sample set 

No. of iterations 

required by the attack 

algorithm to generate a 

strong attack sample set 

MNIST 
Target model (our’s),  VGG16,  

VGG7, ResNet32, ResNet50 

FGSM, CW, 

PGD 
2.1, 2.54, 3 

1000 for CW, 10 for 

FGSM and PGD 

FashionMNIST 
Target model,  VGG16,  

VGG7, ResNet32, ResNet50 

FGSM, CW, 

PGD 
1, 1.7, 2, 2.4 10 

MNIST 
Target model,  VGG16, VGG7, 

ResNet32, ResNet50 
GMA Tr(ϵ) = {0.1e-1 to  3.0e-6} 10 

FashionMNIST 
Target model,  VGG16, VGG7, 

ResNet32, ResNet50 
GMA Tr(ϵ) = {0.1e-1 to  3.0e-6} 10 
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MNIST 

EAT model1, EAT model2, 

EAT model3, EAT-integrated 

Ensemble model (proposed) 

GMA Tr(ϵ) = {0.1e-1 to  3.0e-6} 10 

FashionMNIST 

EAT model1, EAT model2, 

EAT model3, EAT-integrated 

Ensemble model (proposed) 

GMA Tr(ϵ) = {0.1e-1 to  3.0e-6} 10 

MNIST 

EAT model1, EAT model2, 

EAT model3, EAT-integrated 

Ensemble model (proposed) 

FGSM, CW, 

PGD 

Tr(ϵ) = {0.1e-1 to  3.0e-6}, 

1, 2, 3 

1000 for CW, 10 for 

GMA, FGSM and PGD 

FashionMNIST 

EAT model1, EAT model2, 

EAT model3, EAT-integrated 

Ensemble model (proposed) 

FGSM, CW, 

PGD 

Tr(ϵ) = {0.1e-1 to  3.0e-6}, 

1, 2, 3 

1000 for CW, 10 for 

GMA, FGSM and PGD 

 

Table 2 presents the list of the datasets, deep neural 

network architectures, and input parameters used in the 

experimental study. The images of MMIST and Fashion-

MNIST datasets were utilized in their original form for 

training on clean data with a train-test split ratio of 70:30. The 

adversarial images of MNIST and Fashion-MNIST were 

generated for PGD, FGSM, and CW using their respective 

attack algorithms, sourced from open-source repositories [48, 

50]. The GMA datasets were created using the method 

described in algorithm 1. For each clean dataset, adversarial 

samples were generated for GMA, PGD, FGSM, and CW 

attacks, resulting in four distinct attack datasets per clean 

dataset and attack type. 

The first four rows of Table 2 outline the parameters used 

for attack analysis, assessing the efficacy of the GMA attack 

and evaluating the robustness of various defense models. The 

remaining four rows detail the parameters for training the EAT 

and MIA defense models. The target model DNN is utilized 

for performance analysis before and after adversarial attacks.  

The EAT model-1, EAT model-2, and EAT model-3 are 

trained on adversarial samples generated using PGD, FGSM, 

CW, and GMA attacks. The MIA defense model further 

enhances performance by improving the detection and 

mitigation of these adversarial attacks. Additionally, state-of-

the-art defense models, including VGG7 [35], VGG16 [41], 

ResNet32 [33], and ResNet50 [40], are incorporated into the 

study to evaluate their robustness against GMA attacks and to 

conduct comparative and ablation studies. 

5.3. Method Evaluation 

The MIA method is evaluated on the test datasets 

containing legitimate and adversarial attack samples. The f1 

score and model accuracy are the most commonly used quality 

metrics that quantify the precision and robustness of a 

classifier and are used here to assess the performance of the 

proposed MIA method. The f1 score depends on precision and 

recall metrics, with precision measuring the accuracy of a 

model's predictions. A higher f1 score and model accuracy 

enhance performance. The formulae of precision, recall, f1 

score, and accuracy are shown in Equation 7 to Equation 10, 

extracted from [31]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =   
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (8) 

𝑓1  = 2 ∗  
1

((1⁄𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+(1⁄𝑟𝑒𝑐𝑎𝑙𝑙))
 (9) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (10) 

6. Results and Discussion 
The GMA perturbations are significantly smaller than 

those used in conventional attack methods. Consequently, 10 

iterations were required to generate adversarial samples that 

remain visually similar to the original images while effectively 

compromising the target model. The influence of the GMA 

attack is assessed with visual and attack analysis. 

6.1. GMA Visual Analysis Results 

Figure 6 shows the results of the visual analysis 

conducted to assess the visual similarity between the clean 

images of MNIST and Fashion-MNIST and the images 

resulting from GMA, PGD, FGSM, and CW attacks. The first 

row displays the original (clean) images from the MNIST and 

Fashion-MNIST datasets. The subsequent rows illustrate the 

perturbed images generated by GMA, PGD, FGSM, and CW 

attacks at different perturbation levels. The results 

demonstrate that the original and GMA-perturbed images 

appear strikingly similar across all perturbation levels of 𝜖, 

making them indistinguishable by the human observers and 

target models. In contrast, adversarial images generated by 

PGD, FGSM, and CW attacks exhibit slight visual differences 

from the original images, as they utilize larger perturbation 

sizes. These findings confirm that the similarity between 

original and adversarial images is higher when the 

perturbation size (𝜖) is small. Despite their subtle nature, these 

perturbations remain highly effective in deceiving the target 

models. 

6.2.  GMA Attack Analysis Results 

Figure 7 to Figure 10 shows the attack analysis results 

conducted on various DLMs, as outlined in the experimental 
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setup section of this paper. The defense models-VGG16, 

VGG7, ResNet32, and ResNet50-were trained on PGD, 

FGSM, and CW attacks, whereas the target model DNN was 

not trained on adversarial attacks. Figure 7 displays the impact 

of various attacks on the DLMs under Normal (Bacc) and attack 

conditions were tested for the MNIST dataset. The Bacc values 

of VGG16, VGG7, ResNet32, ResNet50, and target DNN 

show over 80% accuracy, indicating their well-trained 

performance for MNIST image classification under normal 

conditions. However, when subjected to the GMA attack, their 

performances deteriorate drastically, resulting in the following 

worst-case model accuracies (Fool(M)acc): VGG16: 9.90%, 

VGG7: 5.30%, ResNet32: 5.06%, ResNet50: 9.31%, and 

Target DNN: 0.62%. 

 
Fig. 6  The images of original and various attack samples of MNIST and Fashion-MNIST datasets presented for visual analysis

The results demonstrate that the GMA attack, with its 

truncated perturbations, effectively manipulates state-of-the-

art defense models, leading to severe performance 

degradation. This confirms that the GMA attack exerts the 

highest influence on all targeted DLMs, making it a highly 

effective adversarial attack. In contrast, the other attacks-

PGD, FGSM, and CW-have a minimal effect on the defense 

models VGG16, VGG7, ResNet32, and ResNet50, yet 

maintain best-case accuracies. This is likely because these 

models were specifically trained to defend against PGD, 

FGSM, and CW attacks, allowing them to perform well 

against them. The DNN, which has not been trained on any of 

the attacks, has significantly affected its performance to all the 

performed attacks, resulting in degraded accuracies of 1.92% 
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for PGD, 2.70% for FGSM and 1% for CW, respectively. 

Figure 8 shows the impact of various adversarial attacks on 

DLMs tested for the Fashion-MNIST dataset. Under normal 

conditions, the baseline accuracies of VGG16, VGG7, 

ResNet32, ResNet50, and a standard DNN are 98.14%, 97%, 

98.05%, 99.40%, and 99.30%, respectively.  

However, when subjected to a GMA attack, these models 

experience a substantial decline in accuracy, dropping to 

8.90%, 7.50%, 6%, 9.66%, and 2.07%, respectively. This 

demonstrates that the GMA attack exerts the most significant 

influence on all targeted DLMs. Nevertheless, VGG16, 

VGG7, ResNet32, and ResNet50 exhibit relative robustness 

against other adversarial attacks, including PGD, FGSM, and 

CW.  

Notably, an unprotected target model-one not trained on 

adversarial perturbations-suffers drastic accuracy reductions 

to 2.07%, 5.92%, 3.77%, and 14.20% when exposed to these 

attacks on the Fashion-MNIST dataset. The attack success 

rates comparison of different adversarial attacks on the 

targeted DNNs (VGG16, VGG7, ResNet32, ResNet50, and 

DNN) are shown in Figure 9, offering insight into the relative 

influence of the GMA attack on these DLMs.  

The GMA attack is the most influential, with an average 

success rate of 91.59% on the MNIST dataset and 97.86% on 

the FashionMNIST dataset, outperforming the other attacks. 

The GMA attack samples with truncated perturbations are 

sufficiently strong to deceive all defense models, meeting the 

conditions for a successful attack. 

 
Fig. 7 The performance comparison of various DLMs before (Bacc) and after adversarial attacks (GMA, PGD, FGSM and CW) using the MNIST 

dataset  

 
Fig. 8 The performance comparison of various DLMs before (Bacc) and after adversarial attacks (GMA, PGD, FGSM and CW) using the Fashion-

MNIST dataset 
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(a) MNIST 

 

(b) Fashion-MNIST 

Fig. 9 Attack success rates of various adversarial attacks on tested DLMs using, (a) MNIST, and (b) Fashion-MNIST datasets. 

Figure 10 presents a sample of classification results 

produced by the DLMs under both normal and GMA attack 

conditions.  

The figure is divided into two sections: (1) the upper 

section, which displays classification outcomes for the 

MNIST dataset under (a) normal conditions and (b) GMA 

attack conditions, and (2) the lower section, which illustrates 

classification outcomes for the Fashion-MNIST dataset under 

(a) normal and (b) attack conditions. Under normal conditions, 

the DNNs accurately classified MNIST and Fashion-MNIST 

images, with predicted labels matching their corresponding 

ground truth labels. However, after exposure to the GMA 

attack, the models produced erroneous classifications. For 

instance, a handwritten digit ‘5’ was misclassified as ‘7,’ and 

a Fashion-MNIST image labelled ‘Top’ was misclassified as 

‘Pullover.’ Despite its high success rate, the GMA attack is 

not entirely manipulative, as specific images, such as ‘Ankle 

Boot’ and ‘Digit 1,’ were still correctly classified. 

Nevertheless, GMA remains more sophisticated than standard 

adversarial attacks, achieving the highest attack success rates. 

The results presented in this section highlight that the 

vulnerability of models to GMA attacks has been proven via 

visual and attack analysis results. Also, this phenomenon 

underscores the necessity of robust defense models to defend 

against many sophisticated adversarial attacks. 
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                                      (a) Normal                                                                          (b) Under GMA attack 

Fig. 10 A sample classification results produced by the targeted DNNs to GMA adversarial images of MNIST and Fashion-MNIST images

 

Fig. 11 The evaluation metrics f1 and recall scores plotted to visualize the MIA performance in detecting GMA, PGD, FGSM and CW attacks using 

MNIST and Fashion-MNIST datasets 
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Fig. 12 The learning curves of the MIA defense model captured for 50 epochs while training different adversarial attacks GMA, PGD, FGSM and 

CW using MNIST data 

6.3.  MIA Performance Results 

Table 3 summarizes the attack detection efficiency of the 

MIA method. For the MNIST dataset, the model achieves 

detection accuracies of 99.85%, 99.33%, 99.80%, and 99.89% 

against GMA, PGD, FGSM, and CW attacks, respectively. 

Similarly, the Fashion-MNIST dataset attains detection 

accuracies of 99.76%, 99.79%, 99.87%, and 99.89% for the 

same attacks. Figure 11 represents the MIA performance 

scores presented in Table 3, tested for various adversarial 

attacks. The learning and loss curves of the MIA defense 

model over 50 training epochs to train for GMA, PGD, FGSM, 

and CW attacks using MNIST and Fashion-MNIST datasets 

are shown from Figure 12 to Figure 15. Figure 12 and Figure 

14 show the learning curves of the MIA defense model trained 

for GMA, PGD, FGSM and CW attacks using MNIST and 

Fashion-MNIST datasets, respectively.  

Figure 13 and Figure 15 show the loss curves of the MIA 

defense model for training GMA, PGD, FGSM and CW attack 

using MNIST and Fashion-MNIST, respectively. The MIA 

defense model converges at 50 epochs, achieving optimal 

performance with minimal loss. The MIA method's attack 

detection capability and parameter efficiency are compared 

with several state-of-the-art approaches in Table 4. Unlike 

other methods that require an additional model for detection, 

the MIA method independently detects adversarial attacks 

without needing supplementary models. This advantage is 

attributed to MIA’s unique training methodology. 

 
Fig. 13 The MIA defense model loss curves for GMA, PGD, FGSM and CW attacks using MNIST data 
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Fig. 14 The learning curves of the MIA defense model captured for 50 epochs while training different adversarial attacks GMA, PGD, FGSM and 

CW using Fashion-MNIST data 

 

Fig. 15 The MIA defense model loss curves for GMA, PGD, FGSM and CW attacks using Fashion-MNIST data 

Furthermore, the MIA method reduces the number of 

attack samples required for training to 40%, whereas other 

methods typically require 50%. This 10% reduction is 

significant, as generating adversarial samples is time-

consuming, taking approximately 24 to 48 hours, depending 

on the attack type and perturbations applied [29]. The MIA 

achieved this 10% reduction because of the decision to choose 

the appropriate proportion of adversarial examples added to 

the dataset, where the EAT training model also exhibits 

optimal performance. According to EAT-training results 

shown in Table 5 and Table 6, the defense models exhibit 

>80% of best-case accuracy after adding 40% (training cycle-

3) and 50% (training cycle-4) proportion of adversarial 

examples in the augmented dataset. Note that there were no 

significant differences in the detection accuracy between 

training cycle 3 and training cycle 4, but there is a significant 

difference in the requirement of generating adversarial 

samples. Hence, the MIA defense model is trained with 40% 

of adversarial examples. Thus, MIA offers an efficient training 

strategy by minimizing the need for extensive attack sample 

generation by 10%. The MIA defense model also employs a 

simple five-layer architecture, unlike the more complex 

architectures used by other methods. Despite its simplicity, it 

effectively detects GMA attacks alongside PGD, FGSM, and 

CW attacks. Notably, while existing methods fail to detect 

GMA and instead fall victim to it, as previously discussed, the 

MIA defense model successfully detects all tested attacks, 

achieving an average detection accuracy of 99.71%. The 
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performance scores (f1 and accuracy) of EAT Model 1, EAT 

Model 2, and EAT Model 3 are presented in Table 5 for the 

augmented MNIST dataset and Table 6 for the augmented 

Fashion-MNIST dataset. Each EAT model undergoes four 

training cycles: 

• Train Cycle 1: 15% of attack samples in the training set 

• Train Cycle 2: 25% of attack samples in the training set 

• Train Cycle 3: 40% of attack samples in the training set 

• Train Cycle 4: 50% of attack samples in the training set 

Table 3. The detection accuracy of our MIA defense model was tested for Various adversarial attacks 

Dataset Name 

Adversarial Attacks 

GMA PGD FGSM CW 

F1 Acc F1 Acc F1 Acc F1 Acc 

MNIST 99.87 99.85 99.82 99.33 99.89 99.80 99.20 99.89 

Fashion MNIST 99.89 99.76 99.87 99.79 99.88 99.87 99.89 99.89 

Table 4. Performance comparison of state-of-art methods and proposed MIA method 

Training Resources Defense Methods 

Method Name 

Bilateral 

adversarial 

Training [44] 

Fast 

Adversarial 

Training [36] 

Convolutional 

Filter 

statistics [34] 

GAN based 

training [42] 

MIA (The 

Proposed Metod) 

Model Name VGG16 VGG7 ResNet32 ResNet50 
MIA defense 

model 

Architecture 16 layered 7 layered 32 layered 50 layered 5 layered 

Minimum Attack samples required 

to train 
50% 50% 50% 50% 40% 

Additional Model Required? ✔ ✔ ✔ ✔ X 

FGSM attack detected? ✔ ✔ ✔ ✔ ✔ 

PGD attack detected? ✔ ✔ ✔ ✔ ✔ 

CW attack detected? ✔ ✔ ✔ ✔ ✔ 

GMA attack detected? X X X X ✔ 

Model accuracy achieved on GMA 

attack 
3.87% 5% 5.25% 4.11% 99.71% 

Table 5 and Table 6 show that model performance 

improves as the proportion of attack samples in the training 

set increases. All EAT models performed best during the third 

and fourth training cycles. However, the accuracy gain 

between these cycles is only 1%, despite the additional 10% 

attack samples required for training. Given this marginal 

improvement, we select the augmented dataset with 40% 

attack samples and a 10% reduction in adversarial example 

generation. The augmented dataset with a 40% proportion is 

chosen for EAT-integrated ensemble training. The learning 

and loss curves of each EAT model for training cycles 1 and 

3 are illustrated in Figure 16 to Figure 23, providing further 

insights into model performance across different training 

stages.  

Table 5. The accuracy and f1 scores of our defense models (in %) on different adversarial attacks for augmented MNIST dataset 

EAT Model - Training Cycle 
GMA PGD FGSM CW 

F1 Acc F1 Acc F1 Acc F1 Acc 

EAT model 1 

Train Cycle -1 (15%) 72.80 72.00 74.66 74.63 73.87 73.54 72.55 73.35 

Train Cycle-2 (25%) 74.62 73.89 73.77 73.67 74.26 74.68 74.27 74.17 

Train Cycle-3 (40%) 81.57 81.66 80.71 80.65 82.60 82.56 82.10 81.61 

Train Cycle-4 (50%) 82.68 81.67 81.24 80.54 83.24 82.64 83.42 82.12 

EAT model 2 

Train Cycle -1 (15%) 75.60 76.52 74.16 74.10 74.26 74.87 75.13 75.36 

Train Cycle-2 (25%) 77.15 78.75 75.66 75.26 74.17 74.77 78.63 78.10 

Train Cycle-3 (40%) 87.25 87.87 85.78 85.68 86.00 87.20 87.65 86.87 

Train Cycle-4 (50%) 87.51 87.88 88.27 88.11 88.43 88.30 87.85 87.87 

EAT model 3 

Train Cycle -1 (15%) 76.10 77.56 77.45 77.17 77.15 77.00 76.25 76.15 

Train Cycle-2 (25%) 76.66 78.10 79.42 76.57 78.72 78.52 77.62 76.92 

Train Cycle-3 (40%) 95.82 95.80 94.67 94.87 94.23 94.30 95.53 95.66 

Train Cycle-4 (50%) 98.69 98.55 96.38 96.17 96.00 95.26 95.64 96.27 
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Table 6. The accuracy and f1 scores of eat-trained models at four training cycles on different adversarial attacks using an augmented Fashion-MNIST 

dataset 

EAT model - Training Cycle GMA PGD FGSM CW 

 F1 Acc F1 Acc F1 Acc F1 Acc 

EAT model 1 

Train Cycle -1 (15%) 71.30 71.21 74.66 74.63 73.87 73.54 72.55 73.35 

Train Cycle-2 (25%) 73.67 73.64 73.71 73.65 73.25 73.45 73.25 73.15 

Train Cycle-3 (40%) 83.28 83.26 83.27 83.25 83.65 83.53 83.29 83.26 

Train Cycle-4 (50%) 84.68 84.56 84.42 84.12 84.32 84.20 84.50 84.35 

EAT model 2 

Train Cycle -1 (15%) 76.86 76.26 76.53 76.12 76.47 76.27 76.39 76.35 

Train Cycle-2 (25%) 77.65 77.35 76.50 76.45 76.78 76.77 76.37 76.17 

Train Cycle-3 (40%) 88.56 88.18 88.78 85.68 86.00 87.20 87.65 86.87 

Train Cycle-4 (50%) 89.35 89.28 89.15 89.10 89.73 89.50 89.68 89.53 

EAT model 3 

Train Cycle -1 (15%) 76.60 76.52 76.74 76.62 76.57 76.34 76.33 76.28 

Train Cycle-2 (25%) 77.83 77.64 77.71 77.39 77.58 77.36 77.95 77.87 

Train Cycle-3 (40%) 96.54 96.32 96.66 96.34 96.30 96.56 96.23 96.29 

Train Cycle-4 (50%) 97.93 97.38 97.74 97.67 97.99 97.67 97.86 97.63 
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1 2 3 4 5 6 7 8 9 10

GMA 64.53 64.94 65.64 66.14 69.34 65.36 69.48 71.54 72.42 72.8
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PGD 68.37 68.54 69.42 70.29 71.01 72.37 73.45 75.61 74.54 74.66

CW 55.77 56.26 58.64 60.06 66.37 69.45 70.36 72.85 75.38 73.35
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(c) Eat model-3 

Fig. 16 The learning curves of the EAT-trained models for the first cycle (i.e., 15% of adversarial examples augmented to trainset) of the EAT process 

using MNIST image data 
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(c) EAT model-3 

Fig. 17 The loss curves of EAT-trained models for the first cycle using MNIST image data 

The performance of EAT Model 1, EAT Model 2, and 

EAT Model 3 during Training Cycle 1 for MNIST and 

Fashion-MNIST is presented in Figure 16 and Figure 18, 

respectively. Similarly, their performance during Training 

Cycle 3 for MNIST and Fashion-MNIST is shown in Figure 

20 and Figure 22. The corresponding loss plots for EAT 

Model 1, EAT Model 2, and EAT Model 3 during Training 

Cycle 1 for MNIST and Fashion-MNIST are illustrated in 

Figure 17 and Figure 19, respectively.  

At the same time, those for Training Cycle 3 are depicted 

in Figure 21 and Figure 23. These plots demonstrate a gradual 

improvement in classification accuracy for each EAT model, 

with performance peaking at the convergence point. All three 

EAT models converge after 10 epochs, with EAT Model 3 

achieving the best performance distinguishing between benign 

and perturbed images. MIA is a unique training method that 

builds a robust defense model against GMA, PGD, FGSM, 

and CW attacks.

 
(a) EAT model-1 

 

(b) EAT model-2 

1 2 3 4 5 6 7 8 9 10

GMA 27.38 30.01 29.25 28.36 29.19 26.16 24.74 25.36 24.46 22.44

FGSM 31.85 30.92 29.46 26.48 27.42 26.96 25.81 23.06 23.36 23

PGD 29.17 31.46 30.58 29.71 28.99 27.63 26.55 24.39 21.96 22.83

CW 28.23 33.74 31.36 29.94 25.63 27.55 29.64 27.15 24.62 23.85

0
5

10
15
20
25
30
35
40

L
o
ss

 i
n

 p
er

ce
n

ta
g
e

Epochs

EAT Model-3 Loss curves of training cycle-1 for various attacks

GMA

FGSM

PGD

CW

1 2 3 4 5 6 7 8 9 10

GMA 58.32 67.11 68.53 69.09 69.96 69.77 70.04 71.68 72.34 72.21

FGSM 52.15 59.08 60.54 62.52 62.58 65.04 66.19 70.94 71.04 73.54

PGD 55.83 62.54 65.42 67.29 66.01 67.37 69.45 70.61 73.54 74.63

CW 50.77 56.26 57.64 60.06 66.37 69.45 70.36 72.85 71.38 73.35

50
55
60
65
70
75
80
85
90

A
cc

u
ra

cy
 i

n
 P

er
ce

n
ta

g
e

Epochs

EAT model-1 learning curves of training cycle-1 for different attacks

GMA

FGSM

PGD

CW

1 2 3 4 5 6 7 8 9 10

GMA 74.83 73.48 74.65 75.21 76.36 76.99 75.95 78.36 75.01 76.26

FGSM 68.15 72.08 70.54 71.52 72.58 73.04 74.19 76.94 76.64 76.27

PGD 70.83 72.54 73.42 70.29 71.01 72.37 73.45 75.61 74.54 76.12

CW 75.77 71.26 74.64 70.06 76.37 73.45 70.36 72.85 75.38 76.35

60

65

70

75

80

85

90

A
cc

u
ra

cy
 i

n
 P

er
ce

n
ta

g
e

EAT model-2 learning curves of training cycle-1 for various attacks

GMA

FGSM

PGD

CW

Epochs



Lavanya Sanapala & Lakshmeeswari Gondi / IJETT, 73(6), 123-148, 2025 

 

142 

 

(c) EAT model-3 

Fig. 18 The learning curves of the EAT models for the first cycle using Fashion-MNIST image data 

 

(a) EAT model-1 

 

(b) EAT model-2 

 

(c) EAT model-3 

Fig. 19 The loss curves of EAT models for the first cycle using Fashion-MNIST image data 
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(a) EAT model-1 

 

(b) EAT model-2 

 

(c) EAT model-3 

Fig. 20 The learning curves of the EAT models for the third cycle, i.e., 40% of adversarial examples augmented to trainset using MNIST data 
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(b) EAT model-2 

 
(c) EAT model-3 

Fig. 21 The loss curves of EAT models for the third cycle MNIST data 
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(c) EAT model-3 

Fig. 22 The learning curves of the EAT models for the third cycle, i.e., 40% of adversarial examples augmented to trainset using Fashion-MNIST data 
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7. Conclusion 
Securing deep image recognition systems against 

advanced gradient-based adversarial attacks is paramount. 

While adversarial training methods effectively counter these 

attacks, they fail to identify and defend against Gradient-based 

Miniature Attacks, often succumbing to their influence. In 

response to this challenge, MIA is a novel adversarial training 

framework engineered to detect gradient-based attacks such as 

GMA, FGSM, CW, and PGD. The lightweight MIA 

architecture ensures robust performance while dramatically 

reducing the need for extensive training attack samples to 40% 

compared to existing methods needed 50%. MIA 

demonstrates an impressive average detection accuracy of 

99.71%. The simplicity and computational efficiency of the 

MIA’s architecture make it both cost-effective and scalable, 

offering a clear advantage over previous AT defense models.  

Nevertheless, the effectiveness of the model integration 

approach to complex models and datasets is minimally 

guaranteed because this MIA method depends on training 

methodology rather than a DLM or dataset. This study 

intentionally excluded more complex detectors, such as 

VGG16 or ResNet50, to prioritize lightweight design. MIA's 

unique technique might reduce the overall requirement of 

adversarial training samples, yet has the disadvantage of 

depending on integrating two DLMs. Even though the first 

phase of training used lightweight models, the proposed 

method requires multiple training cycles. Also, MIA is limited 

to less complex datasets and DLMs. Future research might 

focus on alternative or tweaked training strategies to reduce 

the training overhead and enhance the framework's 

adaptability, enabling the detection of new attack types across 

various application areas and further advancing the resilience 

of deep learning systems against adversarial threats. 
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