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Abstract - Weather forecasting is important in sectors ranging from farming to transport and disasters, to mention but a few. 

This paper discusses the effectiveness of three machine learning techniques: LSTM, GBM, and the combined LSTM-GBM model 

in rainfall prediction based on temperature and humidity data obtained from the chosen sites in Metro Manila and Rizal province. 

Also presented in the given dataset are data forecasted using simple linear regression, Gauss-Newton and Nernst-based non-

linear, and a fourteen-gene-based genetic programming regression. This has been coupled with a high accuracy and low error 

rate based on the LSTM model data output. Another key model was the GBM model, which, despite its effectiveness, was also 

found to have a moderate accuracy with higher levels of FP and FN. This work, therefore, establishes LSTM-GBM as the model 

with the greatest effectiveness, perfect accuracy, precision, recall, and F1 score and the lowest error rates of all the models 

tested. More rigor was added by receiving operating characteristic analysis and precision-recall curve analysis, which all 

suggested that the hybrid model was an incredibly well-performing classifier. Thus, the effectiveness of the hybrid model again 

proves that the integration of various machine learning methods helps get accurate results and the reliability of predictions made 

by the model. The outcomes indicate that while using the presented dataset, the hybrid LSTM-GBM model performed much better 

than the individual LSTM and GBM models, affirming the possibility of utilizing the former structures in weather forecast-

enunciated tasks. These results underscore the significance of applying various machine learning algorithms to improve weather 

prediction so that various entities and industries can make sound decisions. 

Keywords - Rain prediction, Machine learning, LSTM, GBM, Hybrid model. 

1. Introduction  
The effects of climate change and global warming have 

continued to worsen, putting pressure on scholars to research 

environmental issues. Out of all the challenges associated with 

climate variability, the ability to forecast rainfall is among the 

most important, and it will help in water resource 

management, disaster risk reduction, and agriculture. While 

earlier approaches to rainfall predictions involved statistical 

models and physical measurements, modern approaches use 

machine learning algorithms. These innovations seek to 

improve the accuracy and certainty of the forecasts, building 

on the large volume of data collected by remote sensing and 

other instruments. Hybrid machine learning models 

combining two or more algorithms also show much potential. 

In the literature, various research works have been carried out 

with different purposes [1-4].  

For example, Latif et al. [5] assessed to identify the 

benefits of machine learning and remote sensing in the 

development of rainfall estimating models. The statistical 

models, machine learning algorithms, and neural networks 

were compared to identify the most suitable model for 

prediction. Satellite data, radar information, and ground 

observation data were collected to obtain precipitation 

information for the region. The results depicted that the 

machine learning methods, particularly the LSTM models, 

were effective for various timescales, and the RMSE, the R², 

and MAE values were also higher in the study. These findings 

highlight the growing importance of integrating machine 

learning for more reliable rainfall forecasts. This goes to show 

the possibility of the use of complex, combined machine-

learning models in this field.  

The study recommended more research on RS and hybrid 

predictive models since they are not widely used. The same 

objective was used by Gomaa et al. [6], who examined the 

efficiency of the hybrid machine learning models for daily 

inflow forecast in Três Marias Reservoir, eastern Brazil, 

concerning the TRMM data. The current paper applied 

GRNN, GPR, and MLP-PSO modelling techniques to 

simulate and predict the rainfall-runoff for the discharge of 

runoff. The model used input vectors of auto-regression with 

daily TRMM rainfall and TMR inflow data. The conclusions 

also showed that the MLP-PSO model was the most effective 
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since it had the least RMSE for the various combinations. The 

study also showed that the methodology of EMD-HHT 

combined with GRP and MLP-PSO improved the accuracy, 

so the authors proposed the use of the model based on MLP-

PSO-EMD as the most appropriate one for streamflow 

forecasting due to its effectiveness in the RMSE indicators. 

The PSO-SVR has been applied in short-term rainfall 

forecasts by Aderyani et al. [7] and, in this paper, LSTM and 

CNN. The research compared PSO-optimized SVR, LSTM, 

and CNN for the 5-minute and 15-minute ahead rainfall depth 

predictions based on Niavaran station in Tehran. The findings 

also indicated that the PSO-SVR and LSTM are better than 

CNN. Based on the four classes of both severity and duration 

of the rainfall events, the K-nearest neighbor was used. There 

was a great improvement in the accuracy of the forecasts, and 

while comparing the two state-of-the-art models, PSO-SVR 

and LSTM, the accuracy of the two models was highest for 

15-minute and 5-minute forecasts. Including the rainfall 

depth, predictors improved PSO-SVR's accuracy by up to 

13%, while the overall improvements for the models were 3-

15% for PSO-SVR and 2-10% for LSTM. From the study, it 

was evident that PSO-SVR and LSTM were more effective in 

short-term rainfall prediction. These results underscore the 

efficiency of hybrid and deep learning models for short-term 

rainfall predictions. 

Another region-specific research by Huang et al. [8] 

proposed a machine-learning model that combines the best of 

two worlds to predict debris-flow volumes in China. This 

study used a database of debris-flow volumes of 60 

catchments after the Wenchuan Earthquake and topographic 

and seismic parameters. The model used Extreme Learning 

Machine (ELM), Particle Swarm Optimization (PSO), and 

AdaBoost for debris-flow volume estimation. The findings 

showed a high level of prediction as indicated by the MAPE 

of less than 0. 35 for debris flows caused by the Wenchuan 

Earthquake and 0. 11-0. 16 for other earthquakes. The above 

study indicated that once this model is calibrated, it could be 

used to predict regional debris flows due to earthquakes with 

a lot of efficiency. Chen et al. [9] conducted another study in 

Iran that aimed at rainfall-runoff estimation using the 

TreeLSTM spatiotemporal machine learning model.  

This study focused on the Jinsha River (JRB) and Han 

River Basins (HRB) in China and the issues concerning the 

neural network algorithms of hydrological runoff. The 

TreeLSTM model adopted historical and upstream rain and 

runoff data for temporal and spatial feature learning. The 

validation results of TreeLSTM were an RMSE of 0. 5375 and 

a MAPE of 8. 27% for JRB, an RMSE of 3. 3562, and a MAPE 

of 2. 91% for HRB. The accuracy of this proposed model is 

much higher than that of the standard BP and LSTM models, 

and it reaches 96.6% of the final correction accuracy. 

Considering the results of this study, it can be stated that, in 

general, TreeLSTM demonstrates better potential for 

obtaining better results in estimating runoff while, at the same 

time, offering more interpretable results on the given tasks. He 

et al. [10] applied STL and machine learning techniques for 

modeling and forecasting rainfall time series. This study 

employed STL-ML to model and forecast rainfall time series 

using historical and meteorological data. The approach 

included three steps: as individual steps of the proposed ETL 

methodology applied to the time series of rainfall and the 

models built to forecast the components (the GRU network, 

the multi-time-scale GRU, and LightGBM) and averaging of 

the forecasts. These models confirmed that the GRU network 

and LightGBM can understand trends and seasonal 

fluctuations; therefore, it is possible to get accurate forecasts 

for the one-step-ahead scheme.  

Hence, the study showed that STL-ML is useful for 

precise rainfall prediction and can be helpful in flood 

prediction and hydrological disaster management. 

Tikhamarine et al. [11] studied rainfall-runoff modeling to 

enhance the possibilities of hydrological predictions by using 

modern machine-learning techniques, such as HHO and PSO. 

This work incorporated MLP and LSSVM-based approaches 

with HHO to improve the objective function's prediction. This 

paper considered five scenarios using ACF, CCF, and PACF. 

The study's findings showed that models developed with HHO 

had better results than those developed with PSO, and when 

HHO was integrated with LSSVM, the best prediction of 

runoff values was achieved. The study found that applying the 

enhanced HHO technique greatly enhances the efficiency of 

runoff prediction models. Nourani and Farboudfam [12] also 

investigated the rainfall time series disaggregation in the 

mountainous area by applying the hybrid wavelet artificial 

intelligence techniques. 

The study's objectives were to decompose rainfall time 

series for Tabriz and Sahand rain gauges using WLSSVM and 

WANN models. Information was derived from six rain gauges 

in the Urmia Lake basin over 17 years. Analysis of the results 

indicated that the accuracy of the WANN model for the Tabriz 

rain gauge was improved. The accuracy of the models for the 

mentioned stations was 9.1%, 22%, 20%, and 50%; for the 

Sahand rain gauge, the optimized model led to enhancements 

of 4.5%, 21. 1%, 30. 2%, and 53. 3% in respective metrics. 

The study recommended these hybrid models due to their 

performance over the traditional data processing models. 

Short-term rainfall forecasting using cumulative precipitation 

fields from station data: a probabilistic machine learning 

approach was conducted by Pirone et al. [13]. The study 

presented a machine learning model for probabilistic rainfall 

nowcasting for the next 10 minutes for short lead times using 

cumulative rainfall fields from station data as inputs to a feed-

forward neural network for 95 independent machine learning 

models trained and tested on 359 rain events in Southern Italy. 

The study proved that incorporating temporal and spatial 

information enhanced the model's prediction capability, 

making it possible to predict short-term rainfall with 

reasonable accuracy.  
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Table 1. Comparative analysis of machine learning models for rainfall prediction 

Study Machine  Learning Model Performance  Metrics Applications 

Study 1 

[21] 

Logistic Regression, Neural 

Network (MLP), Decision Tree, 

Random Forest 

Logistic Regression: Accuracy: 

82.80%, ROC: 82.45%, Cohen's 

Kappa: 65.05% 

Neural Network (MLP): Accuracy: 

82.59%, ROC: 81.94%, Cohen's 

Kappa: 64.40% 

Decision Tree: Accuracy: 78.64%, 

ROC: 77.50%, Cohen's Kappa: 

55.94% 

Random Forest: Accuracy: 81.27%, 

ROC: 80.40%, Cohen's Kappa: 

61.55% 

Rainfall prediction 

Study 2 

[22] 
CNN-LSTM, RNN-LSTM 

CNN-LSTM: Loss: 0.012, RMSE: 

0.107, MAE: 0.063 

RNN-LSTM: Loss: 0.011, RMSE: 

0.107, MAE: 0.062 

Daily rainfall forecasting 

Study 3 

[23] 

XGBoost, LSTM, Random Forest, 

Gradient Boost, SVM, MLP, 

Linear Regression 

XGBoost: Training CC: 0.88, 

Testing CC: 0.45 

LSTM: Training CC: 0.68, Testing 

CC: 0.21 

Random Forest: Training CC: 0.80, 

Testing CC: 0.30 

Gradient Boost: Training CC: 0.75, 

Testing CC: 0.35 

SVM: Training CC: 0.50, Testing 

CC: 0.25 

MLP: Training CC: 0.70, Testing 

CC: 0.40 

Linear Regression: Training CC: 

0.45, Testing CC: 0.20 

Monthly rainfall prediction in 

hyper-arid environments 

Study 4 

[24] 

ANFIS-ABC, ANFIS-GA, 

ANFIS-SA 

ANFIS-ABC: RMSE: 7.60, MAE: 

4.17, R: 0.82 (raw data) 

RMSE: 3.08, MAE: 2.20, R: 0.92 

(preprocessed data) 

Gain: RMSE: 59.47%, MAE: 

47.31%, R: 11.96% 

ANFIS-GA: RMSE: 7.95, MAE: 

4.62, R: 0.80 (raw data) 

RMSE: 3.67, MAE: 2.71, R: 0.89 

(preprocessed data) 

 

Gain: RMSE: 53.78%, MAE: 

41.49%, R: 10.19% 

ANFIS-SA: RMSE: 8.58, MAE: 

5.50, R: 0.78 (raw data) 

RMSE: 4.16, MAE: 3.10, R: 0.85 

(preprocessed data) 

Gain: RMSE: 51.48%, MAE: 

43.68%, R: 9.60% 

Daily rainfall prediction 

Study 5 

[25] 

Improved DBN, LSTM (Hybrid 

Model) 

Improved DBN: MAE: 0.2435, 

MSE: 0.0838, RMSE: 0.2895 

LSTM: MAE: 0.544, MSE: 0.4042, 

RMSE: 0.6439 

Long-term rainfall prediction 

in Indian regions 
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Study 6 

[26] 

BC-MODWT-DNNs (ConvLSTM, 

CNN-Bi-LSTM) 

ConvLSTM: NSE: 0.988, RMSE: 

0.008 

CNN-Bi-LSTM: NSE: 0.990, 

RMSE: 0.006 

Real-time rainfall and runoff 

prediction in urban 

catchments 

Study 7 

[27] 
SAELM, WSAELM 

SAELM: NSE: 0.842, RMSE: 

0.568, MAE: 0.439, R: 0.930 

WSAELM: NSE: 0.973, RMSE: 

0.245, MAE: 0.196, R: 0.988 

Monthly groundwater level 

prediction in Kermanshah, 

Iran 

Study 8 

[3] 
MLP, SVR 

MLP: RMSE: 0.162, MAE: 0.120, 

R: 0.990 

SVR: RMSE: 0.191, MAE: 0.140, 

R: 0.980 

Hydro-power production 

capacity prediction in 

Northern Italy 

Study 9 

[28] 

ELM-PSOGWO, ELM-PSO, 

ELM-GWO, ELM-PSOGSA 

ELM-PSOGWO: RMSE: 55.14, 

MAE: 46.59, NSE: 0.919, R2: 

0.925 

ELM-PSO: RMSE: 71.59, MAE: 

57.07, NSE: 0.864, R2: 0.866 

ELM-GWO: RMSE: 69.69, MAE: 

53.34, NSE: 0.866, R2: 0.871 

ELM-PSOGSA: RMSE: 66.22, 

MAE: 51.55, NSE: 0.891, R2: 

0.895 

Monthly runoff prediction in 

Mangla watershed, Northern 

Pakistan 

Study 10 

[1] 

ANFIS, ANFIS-GA, ANFIS-DE, 

ANFIS-PSO 

ANFIS: Training AUC: 0.807, 

Validation AUC: 0.768, Accuracy: 

0.805 

ANFIS-GA: Training AUC: 0.922, 

Validation AUC: 0.924, Accuracy: 

0.883 

ANFIS-DE: Training AUC: 0.901, 

Validation AUC: 0.919, Accuracy: 

0.869 

ANFIS-PSO: Training AUC: 0.915, 

Validation AUC: 0.921, Accuracy: 

0.875 

Flood Susceptibility 

Prediction in the Middle 

Ganga Plain, India 

Study 11 

[29] 

RVM-IGOA, RVM-GOA, RVM-

PSO, ANN-IGOA, ANN-GOA, 

ANN-PSO 

RVM-IGOA: NRMSE: 0.125, 

NSE: 0.986, MD: 0.953, KGE: 

0.981 

RVM-GOA: NRMSE: 0.167, NSE: 

0.971, MD: 0.923, KGE: 0.908 

RVM-PSO: NRMSE: 0.174, NSE: 

0.969, MD: 0.911, KGE: 0.890 

 

ANN-IGOA: NRMSE: 0.127, NSE: 

0.981, MD: 0.941, KGE: 0.974 

ANN-GOA: NRMSE: 0.172, NSE: 

0.970, MD: 0.912, KGE: 0.891 

ANN-PSO: NRMSE: 0.168, NSE: 

0.971, MD: 0.924, KGE: 0.899 

River water level prediction in 

coastal catchments in 

Malaysia 

 

The study concluded that this approach is suitable for 

real-time forecasting and early warning systems because the 

method is fast and reproducible. Similarly, Qiao et al. [14] 

proposed a metaheuristic evolutionary deep learning model 

comprising TCN, IAO, and RF for rainfall-runoff simulation 

and multi-step runoff prediction. This study examined how 

different input variables affect prediction accuracy through the 

application of RF in eliminating input variables and parameter 

optimization of TCN through IAO. It is testified that the model 

was applied to five Jinsha River rainfall and runoff stations 

and the Panzhihua station runoff. Due to the results received, 

it was possible to conclude that the high efficiency of the 

offered model augmented the accuracy and speed of water 

resources and disaster prediction. 
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Fig. 1 Structure of the LSTM model

A comparative study with the modern machine learning 

algorithms for time-series forecasting was provided by 

Barrera-Animas et al. [15]. The objective of this study was to 

compare the machine learning and deep learning algorithms 

for rainfall prediction. Of applied models, LSTM is one, 

Stacked LSTM is another, and Bidirectional LSTM Networks, 

XGBoost, and regressors are some more models. The paper 

analyzed data obtained from the five major cities of the United 

Kingdom from 2000-2020. It was observed that bidirectional-

LSTM Networks and stacked-LSTM Networks were the most 

accurate with lower error rates and suggested for economical-

based rainfall prediction.  

The study suggested the Bidirectional-LSTM Network 

for the budget-wise rainfall prediction applications. In 

addition, Bui et al. [16] also conducted a study to confirm the 

reliability of a new hybrid model with swarm intelligence-

optimized ELM for mapping flash flood susceptibility. This 

research implemented Extreme Learning Machine (ELM) and 

Particle Swarm Optimization (PSO) in flash flood prediction. 

The model was applied in a high-frequency tropical typhoon 

area in northwest Vietnam with 654 flash flood locations and 

12 factors. It was also established that the proposed results 

exhibited high prediction performance with kappa statistics of 

0. 801, RMSE of 0. 281, MAE of 0. 079, R² of 0. 829, and 

AUC-ROC of 0. 954, better than other machine learning 

models. This hybrid approach reveals that using more than one 

technique is likely to yield better prediction results.  

Also, Ridwan et al. [17] have proposed a rainfall 

prediction model based on machine learning techniques for 

Terengganu, Malaysia. The research work concerned 

forecasting the rainfall data in Tasik Kenyir using different 

ML algorithms, including BLR, BDTR, DFR, and NNR. Two 

forecasting methods were evaluated: There are two methods 

to check the convergence of the model, namely Method 1 

(M1) with Autocorrelation Function (ACF) and Method 2 

(M2) with Projected Error.  

It has been found that BDTR offered the highest 

regression performance for ACF with high R² values ranging 

from 0. 5 and 0. 9 across different scenarios. It was established 

that method M1 was more accurate than M2; this proved the 

model's efficiency in predicting rainfall and water 
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management. Fijani et al. [18] developed a novel two-layer 

decomposition method with extreme learning machines for 

real-time monitoring of water quality parameters in the 

environment. The study applied CEEMDAN and VMD with 

ELM and LSSVM for daily chlorophyll-a (Chl-a) and 

Dissolved Oxygen (DO) records of a lake reservoir. What has 

been achieved in the second hypothesis is the ability of the 

ELM algorithm to achieve higher accuracy than the LSSVM 

algorithm and the positive impact of the multi-layer structure 

of the model, which was divided into high-frequency 

oscillations and low-frequency oscillations.  

Therefore, employing this research, it can be concluded 

that the proposed hybrid model can be applied for real-time 

water quality control and, therefore, enhance 

ecological/environmental sustainability. In the same way, the 

authors Nigam and Srivastava [19] also employed hybrid deep 

learning models for the elements of traffic stream variables in 

the rainy environment. Concerning the research goal, the task 

of the seminal study was to predict the macroscopic traffic 

stream parameters, including speed and density, under adverse 

weather conditions.  

Therefore, the models were named CNN-LSTM for the 

spatiotemporal features extraction and LSTM-LSTM for the 

memory part. The studies also showed that the model trained 

with traffic and rainfall data gave better accuracy than the 

model that was not trained with rainfall data. This is because 

the LSTM-LSTM model was able to determine longer 

dependency patterns between the traffic stream variables and 

the weather data in traffic control during rainy weather. 

Ahmed et al.  [2] employed a deep-learning hybrid model 

with a Boruta-Random forest optimizer algorithm for 

streamflow prediction using climate mode indices, rainfall, 

and periodicity. The study aimed to enhance streamflow 

prediction by employing a feature selection method with two 

distinct deep-learning models.  

To increase the accuracy, lagged inputs from climate 

mode indices, rainfall, and periodicity were accumulated as 

predictor variables. The findings showed that the proposed 

hybrid LSTM method, namely the BRF-LSTM model, 

achieved more than 98% of predictive errors within an 

acceptable error range (RRMSE ≈1.30%).  

Therefore, the BRF-LSTM model enhanced the 

forecasting performance and should be implemented in 

strategic water resource management. Likewise, Shahani et al. 

[20] evaluated the climate change effect on river flow extreme 

events in various climates of Iran employing LARS-WG6 and 

rainfall-runoff modeling of deep learning. The study was 

intended to estimate future weather changes based on climate 

change for emission scenarios RCP2. The meteorological data 

from LARS-WG6 (2021-2040) forecasted was used as inputs 

to the CNN model to estimate runoff. The results showed that 

rainfall enhanced in CSA, HT, and CA climates under RCP8. 

Five would be +14%, +11%, and +6%, respectively, while 

maximum discharge in CA would increase by 18%, and runoff 

in HT would reduce by about 5% under RCP2. This study 

revealed that there was a dire need to adapt to regional 

differences in the management of water resources.  

In the existing literature, several studies emphasize the 

critical role of accurate weather prediction, which is crucial 

for sectors from agriculture to disaster management, as shown 

in Table 1. While individual models like LSTM and GBM 

have demonstrated promise, a significant research gap 

remains regarding their combined potential. Previous studies 

have rarely leveraged a direct hybrid integration of LSTM and 

GBM for rainfall forecasting using time-series data, limiting 

forecast accuracy under varying conditions.  

This study addresses that gap by proposing and evaluating 

a Hybrid Machine Learning Model for Rainfall Prediction 

Using Time-Series Data. The hybrid framework integrates the 

Long Short-Term Memory (LSTM) and Gradient Boosting 

Machine (GBM) models, harnessing LSTM’s capability to 

capture temporal dependencies and GBM’s robust 

classification and regression performance. 

Unlike previous studies, the hybridization presented here 

is specifically designed to maximize predictive accuracy 

across short-term and long-term rainfall patterns, with 

rigorous validation to demonstrate its superiority over single 

models.  

This research establishes a new level of forecast 

precision, critical for agriculture, transportation, logistics, and 

disaster management applications. Combining LSTM and 

GBM, the proposed approach provides decision-makers with 

enhanced, reliable weather predictions, supporting better 

operational planning and sustainable management of 

environmental resources. 

2. Problem Identifications  
This section compares the analyzed models employed for 

rainfall prediction, describes each model's architecture, and 

outlines the evaluation criteria used. The data preprocessing 

steps, model parameterization, validation techniques, and 

justification for model selection are provided to enhance the 

study's reproducibility and credibility. Table 1 below 

compares eleven studies undertaken in this research [4].  

These studies explore different models, datasets, 

performance metrics, and significant findings conducted by 

researchers globally. The architectures of the Logistic 

Regression, Neural Network (MLP), Decision Tree, Random 

Forest, CNN-LSTM, RNN-LSTM, and hybrid models such as 

ANFIS-ABC, ANFIS-GA, and ANFIS-SA are depicted in 

Figures 1 to 3, respectively. 
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Fig. 2 Structure of the GBM model 

 

Fig. 3 Structure of the hybrid LSTM-GBM model 
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2.1. Mathematical Models for LSTM, GBM, and Hybrid 

Architectures 

2.1.1. Formulation of LSTM Model 

LSTM networks are a variant of RNNs designed to 

capture long-term dependencies and mitigate the vanishing 

gradient problem [30]. The LSTM model uses a series of gates 

to control the flow of information. The detailed equations 

governing the LSTM network are: 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

𝐶̃𝑡 = tanh⁡(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)

𝐶𝑡 = 𝑓𝑡 ⊙𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶̃𝑡
ℎ𝑡 = 𝑜𝑡 ⊙ tanh⁡(𝐶𝑡)

 (1) 

The LSTM model uses several components to control the 

flow of information. The input gate 𝑖𝑡 Manages the 

incorporation of new information, while the forget gate 𝑓𝑡 
Determines what information from the previous state should 

be discarded.  

The output gate 𝑜𝑡 Regulates the output of the current cell 

state. The cell input activation 𝐶̃𝑡 Is a candidate value for the 

new cell state, and the cell state 𝐶𝑡 Holds the long-term 

memory.  

The hidden state ℎ𝑡 Represents the output based on the 

cell state. Activation functions, such as the sigmoid 𝜎 and 

hyperbolic tangent tanh, introduce non-linearity into the 

model. The weight matrices 𝑊 and bias terms 𝑏 are 

parameters learned during training. The element-wise 

multiplication ⊙ operation ensures that cell and hidden state 

updates are applied correctly. 

2.1.2. Formulation of the GBM Model 

GBM is an ensemble technique that builds models 

iteratively to minimize a loss function. The model combines 

weak learners (typically decision trees) to form a strong 

predictive model. The mathematical formulation of the GBM 

model is given by Equation (2): 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜆 ⋅ ℎ𝑚(𝑥) (2) 

where: 

𝐹𝑚(𝑥) Is the model prediction at the m-th stage. 

𝐹𝑚−1(𝑥)⁡It is the prediction from the previous stage. 

𝜆 is the learning rate. 

ℎ𝑚(𝑥)⁡The new base learner was added at stage m. 

The objective at each stage is to minimize the loss 

function L: 

ℎ𝑚(𝑥) = arg𝑚𝑖𝑛
ℎ

 ∑  𝑛
𝑖=1 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + ℎ(𝑥𝑖)) (3)  

Where: 

𝐿  - is the loss function. 

𝑦𝑖  - is the actual values. 

𝑥𝑖  - is the input feature. 

2.1.3. Formulation of Hybrid LSTM-GBM Model 

These weaknesses are avoided in the hybrid LSTM-GBM 

model since LSTM and GBM are combined for data analysis. 

LSTM captures the complex temporal relationships in the 

weather data, while GBM enhances the predictive 

performance by addressing model bias and reducing 

prediction error. This hybrid design capitalizes on the 

strengths of both architectures. 

• LSTM Component: 

ht = LSTM(xt, ht−1, Ct−1) (4)  

• GBM Component: 

Fm(x) = Fm−1(x) + λ ⋅ hm(x) (5) 

• Final Prediction: 

ŷ = FM(ht) (6) 

Where: 

LSTM represents the LSTM network. 

ht It is the hidden state from the LSTM network. 

Fm(x) Is the prediction from the GBM at stage m. 

ŷ is the final prediction. 

This hybrid model aims to improve prediction accuracy 

by combining the temporal learning capabilities of LSTM 

with the optimization strengths of GBM. 

3. Working Structure 
3.1. Model Setup 

The working structure of this study has some basic steps: 

data collection and preliminary data analysis, introduction of 

and selection of the model, model estimation, and analysis of 

results. This systematic approach implies a thorough and well-

structured analysis of the possibility of using various machine 

learning algorithms in the given context of weather prediction. 

3.1.1. Model Development 

Three models were developed and evaluated in this study: 

• LSTM Model: To predict the weather status, LSTM 

model sequences of temperature and humidity data were 

used to train the model.  

• GBM Model: It can be seen, therefore, that GBM is an 

ensemble learning technique that constructs the model 

invented stage-wise and generalizes it in a way that 

optimizes a differentiable loss function. Like the LSTM 

model, GBM model training was based on the same input 

features as what has been identified above.  
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• Hybrid LSTM-GBM Model: This model is the extension 

of the LSTM model, and the GBM model integrates the 

features of both models. The components of this model 

are the LSTM network – which computes temporal 

features of input data, and the GBM model – which 

computes the final weather status. 

 

3.1.2. Model Evaluation 

The effectiveness of the proposed models was analyzed 

based on nine measurements: Accuracy, Precision, Recall, F1-

Score, MSE, MAE, and RMSE. Furthermore, to doubly ensure 

confusion matrices for a better understanding of the models' 

classification capabilities, ROC curves and Precision-Recall 

curves were also computed.  

3.1.3. Analysis and Interpretation 

The last step in the process is the identification and 

comparison of the performances of all three models. This 

consists of analyzing the assessment criteria and charts to 

identify the results and accuracy of each created model. The 

last one, which employed a combined model LSTM-GBM that 

unites LSTM' temporal learning and GBM's classification 

ability, was mentioned as more accurate and with less error 

than the single models.  

 This is especially useful when analyzing the application 

flow; it aids in understanding the utilization of additional 

complex machine-learning algorithms in making weather 

forecasts. The findings show the possibility of applying hybrid 

models to enhance the efficiency of WRF weather predictions 

that are essential to industries, depending on accurate weather 

data. 

3.2. Data Description  

The data source used in this investigation involves 

essential climate parameters obtained from four chosen 

stations in Metro Manila and Rizal province. The authors 

clearly include temperature and humidity as other main 

aspects already presented are weather conditions encoded with 

0 if it is not raining and 1 if it is instead. These variables are 

crucial for models intended for the construction of weather-

predicting systems. 

4. Results and Discussion 
To compare the findings of this study with previous 

studies and to check the efficacy of the models, the 

performance of the three models, the LSTM, GBM, as well as 

the mixed model LSTM-GBM, was measured against the 

following parameters: Accuracy, Precision, Recall, and F1 

Score, MSE, MAE, as well as, RMSE. The three models were 

evaluated on a dataset generated from temperature and 

humidity to provide a binary target parameter for weather, as 

illustrated in Table 2. The measure of accuracy shows the ratio 

of the total number of cases classified correctly to the total 

number of cases. The measure of the accuracy of the LSTM 

model was 0.998341, implying that 99% of the numbers with 

that ID were categorized properly. Based on the above 

analysis, it can be concluded that the availability of AC is very 

high, with 83% of the instances coming from this source. From 

this study, the GBM model, with an accuracy of 0.977404, 

also gives good results but is slightly less reliable than the 

LSTM model. The proposed LSTM-GBM model achieved the 

best accuracy of 0.999585, correctly classifying 99 percent of 

the samples. Total accuracy stood at 96% on the occasions and 

illustrated the kind of synergy that exists between LSTM and 

GBM models. Among all the positive predictions the model 

generates, precision gauges the percentage of true positive 

predictions. With a precision of 0.96478, the LSTM model 

made a few false positive mistakes. With a far lower precision 

of 0.61194, the GBM model indicated a larger false positive 

rate. Reflecting its great capacity to reduce false positives 

relative to both individual models, the hybrid LSTM-GBM 

model attained an amazing precision of 0.99285. 

Sensitivity, sometimes referred to as recall, gauges the 

model's accurate identification of true positives. With a recall 

of 0.97857, the LSTM model proved rather successful in 

spotting the most positive examples. With a recall of 0.33064, 

the GBM model could not clearly capture true positives 

adequately. Reaching a recall of 0.99285, the hybrid LSTM-

GBM model exceeded both single models in terms of almost 

all positive instance identification. The harmonic mean of 

recall and precision, the F1 Score, offers a fair assessment of 

a model's performance. With an F1 Score of 0.97 163, the 

LSTM model showed a decent mix of recall and precision. 

With an F1 Score of 0.42931, the GBM model reflected its 

difficulty in striking recall against precision properly with an 

amazing F1 Score of 0.99285. 

The hybrid LSTM-GBM model proved to be quite 

balanced and generally efficient. Between expected and actual 

values, MAE and MSE, respectively, are used to gauge the 

average absolute and squared deviations. With an MSE of 

0.00127 and an MAE of 0.00179, the LSTM model proved 

highly accurate in forecasts. Reflecting more significant 

mistakes in its predictions, the GBM model had an MSE of 

0.01594 and an MAE of 0.03326. With an MSE of 0.00044 

and an MAE of 0.00193, the hybrid LSTM-GBM model 

shows its improved prediction accuracy by greatly lowering 

these mistakes. 

Table 2. A comparison of the model performance 

Model Accuracy Precision Recall F1 Score MSE MAE RMSE 

LSTM 0.998341 0.96478 0.97857 0.97163 0.00127 0.00179 0.03574 

GBM 0.977404 0.61194 0.33064 0.42931 0.01594 0.03326 0.12626 

LSTM-GBM 0.999585 0.99285 0.99285 0.99285 0.00044 0.00193 0.02114 
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RMSE offers a standard deviation of prediction error 

metric. With an RMSE of 0.03574, the LSTM model showed 

remarkably minimal prediction errors. Reflecting greater 

variation in its prediction mistakes, the GBM model had an 

RMSE of 0.12626. With an RMSE of 0.02114, the hybrid 

LSTM-GBM model proved to be the most consistent and 

accurate in forecasts. Ultimately, across all evaluation criteria, 

the hybrid LSTM-GBM model outperformed the separate 

LSTM and GBM models. By combining the best features of 

both models, this hybrid technique produces lower error rates 

(MSE, MAE, RMSE) and enhanced accuracy, precision, 

recall, and F1 Score.  

These findings draw attention to the possible advantages 

of integrating several machine learning methods to improve 

classification task predicting performance. The performance 

of the models in terms of True Positives (TP), True Negatives 

(TN), False Positives (FP), and False Negatives (FN) is 

thoroughly broken out in the confusion matrix as in Figure 4. 

Examining the confusion matrices for the LSTM, GBM, and 

hybrid LSTM-GBM models provides an important new 

understanding of their classification capacity. Based on the 

confusion matrix, the LSTM model, the accuracy of the model 

in forecasting both classes is extremely high. It classifies 

rather few incorrectly while correctly identifying 4678 cases 

of class 0 (no-rain) and 137 cases of class 1 (rain). Also, at just 

five erroneous positives and three false negatives, there is vast 

potential for the LSTM model to align the two classes 

accurately. This is a great advantage of the LSTM model; the 

model performs rather stably and robustly, partly due to such 

great precision and recall. The GBM model, on the other hand, 

gives a reasonable number of correct predictions or true 

positives, with significantly higher false positives and false 

negatives than the LSTM model. In the confusion matrix result 

for the GBM model, class 1 is predicted as 26 instances, while 

class 0 is correctly predicted as 4674. Moreover, the model 

wrongly labels 83 occurrences as class 0 while accurately 

identifying just 41 examples of class 1. Particularly in 

determining the positive class (rain), these results show that 

the GBM model suffers from accuracy and recall, which 

reduces general dependability and accuracy. But as its 

confusion matrix shows, the hybrid LSTM-GBM model 

performs close to flawlessly. With only one mistake in each 

category, it appropriately labels practically all cases, noting 

4682 instances of class 0 and 139 instances of class 1. The 

very low false negatives (1) and false positives (1) emphasize 

the remarkable accuracy and recall of the model.  

This model minimizes errors in classification by 

efficiently aggregating the strengths of LSTM and GBM. The 

analysis of the forecast results indicates that Li, Le, and Ma's 

hybrid LSTM-GBM model has less mean absolute percentage 

error than the individual LSTM and GBM models. Generally, 

the score achieved by the LSTM model is high with a few 

mistakes, while, on the other hand, the GBM model has many 

false positive and false negative cases. The virtues of both 

models are fully utilized to attain a near-perfect classification; 

therefore, it is evident that the hybrid model increases the 

overall effectiveness. This superior performance involves 

measures like accuracy, precision, recall, and a low error rate, 

which makes the hybrid model show high performance on 

binary classification. 

 
Fig. 4 Confusion matrices of (a) LSTM, (b) GBM, and (c) Hybrid LSTM-GBM models 
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Figure 5 shows the performance of the LSTM model 

component inside the hybrid LSTM-GBM model, 

highlighting how the accuracy and loss measures change after 

500 training cycles. Subfigure (a) shows the number of epochs 

against the accuracy of the training and validation datasets. 

The training accuracy first rises quickly and, in the first few 

epochs, approaches almost ideal levels. This trend suggests 

that the model quickly picks the fundamental patterns in the 

training data. Rising quickly and stabilizing near 1.0, the 

validation accuracy also shows the great generalizing capacity 

of the model to unprocessed data. Following the first learning 

phase, the near-constant accuracy for training and validation 

datasets points to the model preserving good performance free 

from major overfitting. Placed against the number of epochs, 

Subfigure (b) shows the loss values for training and validation 

datasets. The training loss first declines significantly, showing 

the model's rapid adaptation to minimize errors. Effective 

learning is shown by the identical downward tendency of the 

validation loss. Training and validation losses are steady at 

low values across the next epochs, indicating that the model 

keeps performing effectively and free from significant swings. 

The rather modest and steady loss values across the training 

procedure support, even more, the resilience of the model and 

its capacity to preserve constant performance. These charts, 

taken together, show that the LSTM component of the hybrid 

model has outstanding learning and generalizing properties. 

The low loss and great accuracy across both training and 

validation sets point to the hybrid LSTM-GBM model's great 

efficacy for the particular classification problem, so balancing 

stability over long training cycles with precision. Two 

important evaluation measures-the Precision-Recall Curve 

(PRC) and the Receiver Operating Characteristic (ROC) 

curve- are used, as shown in Figure 6, to show the 

performance of the hybrid LSTM-GBM model. Such visuals 

assist one in comprehending the model's performance in terms 

of accuracy, recall, and discriminability of different classes.  

 
Fig. 5 The hybrid LSTM-GBM models performance (a) Accuracy, and (b) Loss Vs Epochs 

 
Fig. 6 The performance of the hybrid LSTM-GBM model was measured by (a) ROC, and (b) PRC 
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 As seen in Subfigure (a), the ROC curve of the proposed 

system depicts the trade-off between the false positive rate and 

the area under the curve–genuine positive rate or sensitivity. 

A very good curve performance is observed by the hybrid 

LSTM-GBM model, whose curve is close to the top left 

corner. One has flawless classification capacity with a 1.00 

area under the ROC curve (AUC). This suggests that free from 

false positives or false negatives, the model is quite good at 

differentiating between positive and negative classes. Such a 

high AUC captures the dependability and resilience of the 

model in target variable prediction. 

Subfigure (b)'s Precision-Recall curve emphasizes the 

link between recall-the fraction of true positive predictions 

among all positive predictions-and precision-the proportion of 

true positive predictions among all positive predictions. For 

most of the recall values, the curve stays near 1.0, meaning 

that the hybrid LSTM-GBM model preserves great accuracy 

over a range of recall levels. This performance implies that 

even with varying recalls, the model can efficiently find 

genuine positives while minimizing false positives. The minor 

dip near the end of the curve reflects the few misclassifications 

of the model but does not appreciably reduce its general 

excellent performance. 

5. Conclusion 
This work uses temperature and humidity data to evaluate 

three machine learning models-LSTM, GBM, and a hybrid 

LSTM-GBM-forecasting weather. Accuracy, precision, 

recall, F1 score, MSE, Mean MAE, RMSE, and confusion 

matrices were used to evaluate each model. With 0.983991 

accuracy, 0.96478 precision, 0.97857 recall, and 0.97 163 F1 

score, the LSTM model performed admisitely. Its low error 

rates are seen from MSE 0.00127, MAE 0.00179, and RMSE 

0.03574. The durability of the confusion matrix was 

demonstrated by minimal misclassifications. The GBM model 

scored 0.977404 accuracy, 0.61194 recall, and 0.42931 F1 

score; hence, it performed poorly. With 0.01597, 0.03326, and 

0.12626, its MSE, MAE, and RMSE were higher. The 

confusing matrix's classification accuracy was limited by 

more false positives and negatives. With 0. 999585, 0.99285, 

and 0.99285 F1 scores, the hybrid LSTM-GBM model came 

out top. With 0.00044 MSE, 0.00193 MAE, and 0.02 114 

RMSE, it likewise had the lowest error rates.  

The confusion matrix of the hybrid model revealed almost 

flawless classification with only one false positive and one 

false negative. Verifying its better performance, the hybrid 

model's ROC and Precision-Recall curves Perfect 

categorization was shown by the 1.00 AUC of the ROC curve. 

The Precision-Recall curve demonstrated that the model 

minimized false positives while identifying true positives at 

all recall levels. At all evaluation measures, the hybrid LSTM-

GBM model finally outperformed the LSTM and GBM 

models. Combining LSTM and GBM this hybrid method 

enhances predictive accuracy, precision, recall, and error 

rates. Integrating machine learning techniques enhances 

model performance for difficult categorization issues. Hence, 

the hybrid LSTM-GBM model presents a potential weather 

prediction solution.  
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