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Abstract- Effective software-related cost estimation is paramount in decision-making. Estimating is the macro activity that is 

part of project methodology and allows for the effective delivery of projects. This is useful in project management because it 

assists with implementing the necessary tasks. Pretty much the discussed parameter helps in the optimization of resources in 

relation to the requirements for accomplishing project scope. There are several important factors that encompass software 

projects, including time, resources, human resources, infrastructure and materials, finance, and risk. In case the cost estimate is 

lower than required, the time for the development of the project will be longer and more expensive. The scope for waste of 

resources has been exaggerated. Artificial intelligence is a fusion of machine learning and deep learning to produce smart 

systems capable of posing solutions to problems. Software effort estimation assists in constructing the objectives, which include 

planning, scheduling, and budgeting for a project. Different prediction trials mentioned above, which were expert opinion-based, 

analogy-based estimates, regression estimations, categorization strategies, and deep learning algorithms, were suggested as 

predictors of type of endeavors. Among the evaluation metrics discussed were Mean Absolute Error, Root Mean Squared Error, 

Mean Square Error, and R-squared. Therefore, estimation has and will take a significant role in risk prevention measures in the 

future.  Metrics for assessment will be used in many assessments. After this, other studies intend to explain the reasons why 

software developer cost modeling can be very beneficial in light of LSTM (Long Short-Term Model) and CNN (Convolutional 

Neural Network) prospects introduced throughout the research. This method allows for solving intricate tasks with multiple 

dependencies in an ever-changing environment by using ML (Machine Learning) and DL (Deep Learning) technologies. Further 

studies reveal that the most common deep learning architecture in these studies was convolutional, and relatively little 

application was deep learning.  
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1. Introduction  
Building a fair and robust software product requires many 

activities, from gathering and analyzing requirements to final 

testing and maintenance, all of which must be performed 

within time and cost constraints [1]. However, as the projects 

evolve, the people who are involved in the managing 

processes are now facing greater challenges in developing 

software. Estimations of time and effort are also considered 

critical planning processes for all commercial organizations. 

Such measures are important for many, including the 

customers of a company who participate indirectly in the 

development process [2]. Estimation of software development 

effort has elicited the use of various techniques. And in the 

current circumstances, measure evaluation is of paramount 

importance. Studies carried out by the Standish Group 

revealed how only 32% of all software projects are delivered 

with the right features, on time, and within budget. 24.4% 

failed, meaning they were canceled or finished but never 

utilized, and 44.4% did not fulfill the previously stated 

requirements [3] [4]. Planning the software and its project is 

one of the most important aspects of the entire process of the 

development of software. It involves a collection of tasks and 

activities that can be generally grouped as the creation of a 

plan for the project, its implementation, estimating risks that 

may arise, and generating alternative solutions for these 

issues. Software cost and effort estimation is part of the project 

planning process, which includes estimating project expenses 

as well as the number of man-hours and time required to 

execute the project. An erroneous estimate can lead to project 

failure and greater expenditures. Inaccurate software project 

estimates are caused by a number of factors, including 

stakeholder governance, market pressures, project budgeting, 

project risk management, required development effort 

(capacity, estimation, and availability), project objective 
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formulation, and project scheduling errors [5]. In the decision-

making process, an accurate estimate is crucial. Overestimating 

project effort can lead to a project proposal being rejected, 

whereas underestimating might cause work to be unfinished 

owing to financial constraints and scheduling conflicts [6]. 

These models rely on prior completed projects that are 

comparable to ongoing software endeavors to estimate. 

Estimates are derived from dataset studies or data from earlier 

program releases. Non-algorithmic estimation techniques 

include analogy estimation, expert judgment techniques (such 

as top-down and bottom-up estimation), learning-based 

approaches (Artificial Neural Networks) [7–10], Machine 

Learning (ML) [11], and Deep Neural Networks (DNN) ), and 

Long Short-Term Memory (LSTM). There are a number of 

restrictions, including the need for large, inclusive, and 

unbiased training data sets. Training and learning also require 

a significant amount of time to attain a high level of accuracy 

and relevance. Neural networks are, therefore, difficult to use 

for high-dimensional, multi-objective data classification. 

Accuracy, data requirements, interpretability, scalability, and 

adaptability are important factors to consider when comparing 

different models, including both conventional and deep 

learning-based approaches for software project development 

cost estimation. An organized comparison of the most popular 

models can be found below (Table 1): 

 

Table 1. Comparing different models 

Model Type Accuracy Data Req. Scalability Adapt-ability 

Expert Judgment Low–Medium Low Low Low 

COCOMO/ Algorithmic Medium Medium Medium Low 

Regression Models Medium Medium High Low 

Random Forests Medium–High _ Medium Medium 

SVM Medium Low–Medium Low Medium 

Feedforward Neural Nets High High High High 

LSTM/RNN High High Medium High 

Transformers Very High Very High High Very High 

Even with the availability of numerous estimation models 

and techniques, accurately estimating software development 

cost and effort is still an ongoing task. Missed deadlines, 

budget overruns, and project failure can result from estimation 

errors. Analogy estimation, expert judgment, machine 

learning, deep neural networks, and LSTM are examples of 

traditional and learning-based approaches that still face 

challenges like reliance on sizable, objective datasets, lengthy 

training periods, and trouble managing high-dimensional, 

multi-objective data. Reliable, real-time decision-making in 

project planning suffers from these issues.  

Although there are a number of estimation models, such 

as machine learning and traditional approaches, there aren't 

many reliable, scalable, and accurate models that can handle 

high-dimensional, multi-objective data with sparse or 

unbalanced datasets. Furthermore, a large number of existing 

models have limited practical utility because they are unable 

to adjust to changing project dynamics or generalize well 

across a variety of software projects. Better deep learning 

models are required in order to decrease reliance on large data 

sets, speed up training, and produce more accurate and easier-

to-understand cost and effort estimates. 

Over time, the application of deep learning techniques to 

software project cost prediction has undergone significant 

change, reflecting both the growing complexity of software 

systems and more general trends in artificial intelligence 

deployment. At first, the primary methods for estimating 

project costs were expert opinion, historical comparisons, and 

computer models such as COCOMO. Although these models 

were interpretable, they were not flexible enough to account 

for the intricacy of modern construction techniques. As 

processing power and information became more accessible, 

machine learning techniques began to improve on traditional 

methods. Deep learning's recent success can be attributed to 

its ability to model intricate, nonlinear relationships between 

a range of project characteristics, such as team preparation, 

technology framework, code parameters, development 

method, and project cost outcomes. 

2. Background 

Deep learning has proven to be significantly more 

successful than conventional estimating methods when 

working with complex, high-dimensional data. Traditional 

approaches, like linear regression or other machine learning 

algorithms, frequently rely on assumptions about the 

distributions and relationships of data, which may limit their 

accuracy and flexibility. These methods are typically needed 

for a large amount of human feature engineering, but they are 

less successful at detecting nonlinear patterns. On the other 

hand, because deep learning models, such as neural networks, 

automatically extract intricate features and patterns from raw 

data, they can perform better on tasks like time-series 

forecasting. Additionally, models trained on one task can be 

successfully transferred to another with little extra effort 

thanks to transfer learning and deep learning, which scale well 

with large databases. 

Estimation shows how much cost, time, effort, and 

resources are needed to develop a system or product. Although 

there are several approaches for estimating effort, it is still 
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regarded as one of the most interesting tasks. However, ML 

techniques are not without their limits. First, repeated items 

made in medium to large numbers are well suited for machine 

learning (ML) based techniques (Hammann, 2024). In many 

cases, business software tools include databases containing 

extensive volumes of financial and industrial data. [1] 

Researchers will give some background on deep learning 

techniques in this part. After giving a brief overview of deep 

learning, researchers discuss its differences from machine 

learning. Researchers outline the situations in which DL is 

necessary. Deep learning is a branch of machine learning that 

draws inspiration from the way the human brain processes 

information.  

Why Should you Endeavor to Study Deeply? 

This question may be addressed by a number of 

performance components, including the Universal Learning 

Approach. DL is sometimes referred to as universal learning 

because of its performance in practically all application 

fields. 

1. Robustness: Generally, deep learning algorithms do not 

require well-defined features. Rather, the best qualities 

are automatically acquired in a way that is pertinent to 

the current work. Hence, resilience to common 

alterations.  

2. Generalization: The same Deep Learning (DL) 

technique, also known as Transfer Learning (TL), as 

explained in the next section, can be used for different 

kinds of data or applications (Figure 1). 

3. Modeling: The purpose of the case study is to create two 

cost models; hence, the following actions need to be 

taken twice. The findings for the semi-finished and final 

goods are shown together for ease of viewing.  

2.1. Deep Learning (DL)  

DL is also based on artificial neural networks, which in 

turn give different explanations of the input data [12]. In 

standard machine learning, the steps required to deal with the 

classification problem involve step-by-step operations: 

preprocessing, feature extraction, feature selection, training, 

and classification. Moreover, machine learning algorithm 

performance is strongly influenced by feature selection. 

Deep learning has the ability to automate feature set learning 

for a wide range of applications, in contrast to conventional 

ML techniques [13] [14]. Data classification and learning 

may happen at the same time, thanks to deep learning (Figure 

3). When to Use Deep Learning Machine intelligence is 

useful in many situations and can be on par with or superior 

to human professionals in a number of them [15].  

Neural network-based Deep Learning (DL) models 

excel at recognizing complex trends and non-linear 

correlations in data. Because they can learn features and are 

highly expressive, they don't need a lot of manual feature 

engineering. Despite their advantages, they have drawbacks, 

such as high processing requirements that require substantial 

training resources.  

 
Fig. 1 Classification of deep learning methods [17] 

2.1.1. Decision Trees (DTs) 

DT is a popular interpretive tool that does a good job of 

showing how decisions are made. They don't assume any 

specific data distributions and can handle non-linear 

connections by nature. However, DTs are prone to overfitting 

and are unstable with slight changes, which leads to the 

capture of noise in the training set. Individual DTs may not be 

expressive enough to recognize more complex patterns in the 

data, even though they perform well for simple tasks. 
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2.1.2 Random Forest (RF) 

These models decrease the overfitting issues related to 

individual trees and provide more consistent forecasts. They 

are great at handling non-linear interactions and offer 

insightful analysis of the relevance of traits. Though they are 

resource-intensive as their computational complexity 

increases with the number of trees, though they are less of a 

"black box" than DL models, Random Forests can still be hard 

to read compared to more basic models. Which deep learning 

model is best for categorization will depend on the specific 

aim and the data. Still, among the most often used deep 

learning models for categorization are CNNs, RNNs, and 

LSTMs. 

2.2. Deep Learning Approach(s) Classification 

The three theorems of deep learning that are known today 

consist of Semi-supervised, supervised, and unsupervised. 

Moreover, RL, or deep reinforcement learning, is a type of 

supervised methodology but is often regarded as footnote 

supervised (See Figure 1).  

 

2.2.1. Supervised Deep Learning 

With this approach, there exists labeled data. If 

researchers consider this method, then there are many possible 

inputs and many possible outputs in the universe. If an agent 

trainee well, then he may utilize the environment to determine 

the suitable answers to questions. Some of the supervised 

learning algorithms of deep learning include recurrent neural 

networks, Convolutional neural networks, and deep neural 

networks. RNNs also consist of Long short-term memory and 

Gated Recurrent Units (GRUs) techniques. The main 

advantage of this approach lies in the ability to collect or 

output data based on previous information. It’s a drawback 

that if the training dataset doesn’t contain plenty of samples 

for the classes of interest, the decision boundary may become 

overly stressed. In broad terms, this kind of quite powerful 

method of learning is easier than the rest. 

 

2.2.2. Deep Semi-Supervised Learning 

The basis for mastering this method is semi-labeled 

datasets. Furthermore, RNNs are employed in partially 

supervised learning, including GRUs and LSTMs. Reducing 

the quantity of labeled data required is one benefit of this 

method. Semi-supervised learning is the best method for 

classifying text documents since it overcomes the challenge of 

obtaining a large number of tagged text documents. 

2.2.3. Unsupervised Learning 

This approach enables learning to proceed even when 

labeled input is not available. Common unsupervised learning 

techniques include generative networks, clustering, and 

reduction of dimensionality. These methods have 

demonstrated strong performance on non-linear 

dimensionality reduction and clustering issues. Moreover, a 

wide range of applications have employed RNNs for 

unsupervised learning, including RU and LSTM techniques. 

2.2.4. Reinforcement Learning 

This led to the development of several improved 

reinforcement learning systems. On the basis of this idea, 

several supervised and unsupervised approaches have been 

created. This learning is significantly more difficult than 

standard supervised processes since the reinforcement learning 

method does not have a fundamental loss function. Moreover, 

supervised and reinforcement learning vary in two important 

ways [18]. 

2.3. Deep Learning Network Types 

The two most popular types of deep learning networks, 

CNN and LSTM, are covered in this section. CNN was 

covered in detail since it was so important. Moreover, it is the 

most extensively utilized in several networks and a wide range 

of applications. Deep learning is increasingly regarded by the 

scientific community as a viable technique to enhance cost 

estimates. Deep learning performs better than traditional 

shallow learning methods because its features are more 

carefully chosen and accurately represented. DL is a more 

effective method for assessing software costs because it 

enables the depiction of intricate relationships between effort 

and cost components [19].  

2.3.1. Convolutional Neural Networks (CNNs) 

In deep learning, the CNN algorithm is the most popular 

and extensively utilized. The primary benefit of CNN over its 

forerunners is its ability to autonomously recognize important 

traits without the need for human assistance. Numerous 

applications, such as computer vision, audio processing, and 

facial recognition, have made extensive use of CNNs. Similar 

to conventional neural networks, CNNs were inspired by the 

neurons seen in both animal and human brains. CNN mimics 

the complex cell sequence that makes up the visual cortex of a 

cat's brain, to be more precise. 

CNN Architecture 

There are several levels (sometimes referred to as 

multiple building components) in the CNN architecture. The 

levels of the CNN architecture are described in detail below, 

along with their respective roles. 

Convolutional Layer 

The output feature map is created by convolving these 

filters with the input image, which is represented as N-

dimensional metrics. The CNN input format is covered first in 

the context of convolutional operation. The input of a CNN is 

an image with several channels, whereas the input of a normal 

neural network is a vector format. 

Consistency with CNN 

When it comes to CNN models, overfitting is the biggest 

obstacle to well-behaved generalization. As will be covered in 

the next section, a model is deemed over-fitted if it functions 

exceptionally well on training data but poorly on test data 

(unseen data). The opposite is achieved by an under-fitted 
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model, which absorbs too little information from the training 

set. If a model shows good performance on both training and 

testing data, it is said to be "just fitted". In Figure 2, these three 

groups are shown. Regularization is assisted by a number of 

intuitive ideas to help prevent overfitting; further details on 

overfitting and under-fitting are included in later sections. 

 
Fig. 2 Convolutional Neural Networks (CNNs) 

 
Fig. 3 Architecture of LSTM model 

2.3.2. LSTM (Long Short-Term Model) 

LSTM networks (Figure 3) are designed with sequence 

prediction problems in mind. According to Brownlee (2017), 

there are several Long Short Term Model designs, such as 

CNN-LSTM, stacked Long Short-Term Model, bidirectional 

Long Short-Term Model, encoder-decoder Long Short-Term 

Model, vanilla LSTM, and generative LSTM. The 

statelessness, lack of temporal structure, clumsy scaling, 

fixed-sized inputs, and fixed-sized outputs are some of the 

drawbacks of multi-layer Perceptron (MLP) feedforward 

artificial neural network (ANN) methods (Brownlee) [20]. 

LSTM may be seen as an addition to the network, in contrast 

to the MLP network. Furthermore, LSTM makes up RNN 

techniques. Unlike MLP networks, LSTMs can mimic parallel 

input sequences, process variable-length input to generate 

variable-length output, keep an internal state, and be aware of 

the time structure of their inputs. According to Brownlee 

(2017), the memory cell is the computational unit of the Long 

Short-Term Model. These cells consist of gates and weights 

(both internal state and output weights). 

In addition to the fundamental advantages of deep 

learning models, the effectiveness of deep learning 

approaches for cost estimation in software project 

development work is also influenced by realistic factors like 

team experience and the chosen technology stack. Although 

conventional estimation methods are usually ruled by 

guidelines and mostly rely on expert judgment or historical 

trends, deep learning models can learn from vast data sets to 

reveal intricate, nonlinear interactions between project 

elements and costs.  However, a team with strong machine 

learning, data science, and software engineering skills is 

required for the successful implementation of deep learning. 

The benefits of the approach may be compromised if 

inexperienced teams fail to choose a model, preprocess data, 

adjust it, and interpret the results. The technology framework, 

comprising frameworks such as PyTorch, Tensor Flow, and 

Keras, also influences scalability, integration with existing 

systems, and development efficiency. Meeting the 

computational demands of deep learning also calls for 

advanced technology and resources such as data workflow 

automation, GPU support, and cloud computing systems. 

Deep learning can outperform traditional estimation methods 

by producing more exact, data-driven forecasts that fit 

changing project dynamics and organizational settings when 

properly used by an experienced team with the appropriate 

tools. 

3. Related Work 
One interesting trend is moving toward data-driven 

estimation, which places an emphasis on obtaining and 

choosing large, high-quality datasets from previous initiatives 

in order to train deep learning models. Another trend that 

enables organizations to apply knowledge from external 

datasets or domains to their own environment, even in 

situations where they have limited internal data, is the use of 

model training and transfer learning. Generally speaking, 

hybrid estimation methods that mix domain knowledge, 

conventional models, and deep learning are increasingly 

popular as they help to preserve accuracy, scalability, and 

understanding. As data practices and tooling continue to 

advance, deep learning is expected to play an increasingly 

significant role in providing more accurate, flexible, and data-

informed cost estimation for software development projects. 
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A G Varshini, Priya, et al. (2019) [21], Software Effort 

Estimation aids in project planning, scheduling, and 

budgeting]. Numerous studies, including expert judgment, 

regression estimations, categorization strategies, analogy-

based estimations, and deep learning algorithms, were put out 

to forecast effort. Akhbardeh et al. (2021) [22] examined the 

techniques for calculable factors that affect software cost and 

presented studies that used machine learning techniques to 

develop a trustworthy estimation technique. Machine learning 

(ML) was used by Govinda et al. (2022) [23] to calculate the 

costs of project management software using standard input.  

Alauthman et al. (2023) [24] discussed the selection of 

regression models for software development cost estimates. It 

placed emphasis on matching models to the dataset used for 

estimation and the software development technique. A 

collection of assessments based on simple classifiers and 

stacked ensemble classifiers with and without the feature 

selection technique was published by Mustafa Hammad 

(2023) [25]. A dataset from the software projects of 76 

university students is used in the evaluation research. For any 

assessment criterion, the feature selection strategy can 

improve the performance of every stacked classifier. Selvam, 

Karthick Panner, et al., (2024) [26].  

Victor Uc-Cetina (2023), Recent Advances in Software 

Effort Estimation using Machine Learning, addresses both 

agile and non-agile approaches to software development effort 

estimation using machine learning. It evaluates recent and 

organized advancements in data-driven prediction models for 

software effort estimation and talks about the benefits of 

applying agile methodologies in this field. To increase the 

accuracy of software cost estimation, Fizza Mansoor et al. 

(2024), Improving the Estimation of Software Costs 

Investigation, combine machine learning algorithms with a 

variety of feature selection techniques. The study highlights 

how Principal Component Analysis (PCA)-based feature 

selection greatly improves model performance using the 

COCOMO NASA dataset, highlighting the significance of 

optimal feature selection in cost estimates. 

The model estimates memory usage with a MAPE of 

4.92% and predicts training step length with a MAPE of 

9.51%. Various machine learning and deep learning methods 

were employed to estimate the amount of work. Datasets for 

estimating effort were gathered from Promise repositories, 

GitHub, and ISBSG projects. PRED (25), the proportion of 

projections with an MRE of less than or equal to 25%, was the 

most often utilized indicator for estimations.  

Key Research Findings are: 

1. Conventional Models: In general, conventional models 

are superior to deep learning. Several studies have 

demonstrated that deep learning methods, specifically 

Deep Neural Networks (DNNs) and Recurrent Neural 

Networks (RNNs), perform better than traditional 

estimating models such as Function Points and 

COCOMO. This is especially true for large datasets with 

complex feature relationships. 

2. Temporal and Sequential Data: It has been shown that 

Recurrent Neural Networks (RNNs), and specifically 

LSTM networks, are particularly effective at cost 

estimation when dealing with time-series or sequential 

data, such as the cost trends of software projects over 

time.  

3. Quantity and Quality of Data: Large, high-quality 

datasets are necessary for deep learning models to 

function effectively. Numerous studies show that 

insufficient data can have a detrimental effect on deep 

learning models' performance, underscoring the 

importance of feature selection and data preprocessing. 

4. Hybrid Models: An emerging trend in the field is 

combining deep learning with other machine learning 

techniques (like ensemble methods). It has been shown 

that by reducing bias and variance, this method improves 

predicted accuracy.  

5. Interpretability Issues: One of the main problems with 

using deep learning techniques for software cost 

estimation is the inability to read data. This is a serious 

issue, especially when stakeholders must comprehend the 

results. 

These studies provide valuable insights into the evolving 

application of deep learning in this field and show that, despite 

its challenges, deep learning still has the potential to 

revolutionize software project cost estimation and 

management. The application of deep learning techniques for 

software cost estimation is a novel and fascinating field with 

significant potential to improve prediction accuracy and 

reliability when compared to more conventional approaches. 

However, there are problems with data quality, model 

interpretability, and the need for big databases. 

4. Performance Measures 
Machine learning is a technique that teaches computer 

systems to become better versions of themselves by using 

historical data. Data-driven predictions are made when ML 

algorithms build a prediction model (Figure 4) using a 

collection of previously accessible training data [27]. Various 

techniques are employed by numerous scholars and 

professionals globally to enhance software estimates [28]. 

Numerous methods for assessing the precision of prediction 

models have been put forth in the software estimating 

literature to date. PRED, MMRE, correlation, and other 

methods can be used to evaluate the performance of a model 

that generates continuous output. PRED is a metric derived 

from relative error, or RE, which is the relative magnitude of 

difference between estimated and actual value. One approach to 

conceptualize these metrics is to state that performance 

measures and additional new variables, N+1, N+2, etc., are 

included in the training data, which consists of records with 

variables 1, 2, 3, and so on. 
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Fig. 4 Architecture of proposed tool 

When using deep learning methods for cost estimation of 

software project development, several statistical methods are 

integrated into the modeling process to ensure the reliability, 

generalization, and robustness of the estimates. Performance 

Metrics like Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE), and R² (Coefficient of 

Determination), these metrics provide quantitative evidence of 

model accuracy and help compare deep learning performance 

with traditional estimation methods. RMSE is often preferred 

when large estimation errors (e.g., budget overruns) are 

especially critical. While deep learning introduces powerful 

nonlinear modeling capabilities, these statistical methods are 

essential to ensure the models are reproducible, interpretable, 

and statistically valid for real-world cost estimation tasks in 

software development. 

4.1. MRE (Magnitude of Relative Error) 

To assess the amount of estimating error in a single 

estimate, first ascertain the Magnitude of Relative Error for 

each data point. This step is used to calculate PRED (n) and 

acts as a model for the one that follows. A score of 25 percent 

or below denotes good results. 

MRE = |predicted −  actual| (1) 

4.2. MMRE (Mean Magnitude of Relative Error) 

Currently, the most efficient and accepted metrics for 

estimating exactness are used in MMRE (Mean Magnitude of 

Relative Error), also known as mean absolute relative error. 

These measures include PRED at power levels 0.25, 0.50, and 

0.75, respectively, and MMRE. Researchers employ a 

standard metric known as Mean Magnitude of Relative Error 

(MMRE) [29] to evaluate capabilities.  

  MMRE = (
100

N
) ∗ ∑|predictedi −  actuali |/( actuali ) (2) 

4.3. Mean Squared Error (MSE)  

The average squared difference between the expected and 

actual values in a dataset is determined using a metric called 

mean squared error, or MSE. The squared residuals—the 
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discrepancies between the expected and actual values for 

every data point are averaged to determine it. You can 

evaluate the model's accuracy using the MSE number. 

MSE = ∑{(predictedi − actuali)2} /N (3) 

4.4. Root Mean Squared Error (RMSE) 

Among other error metrics like Mean Absolute Error 

(MAE) and Root Mean Squared Error (RMSE), Mean Squared 

Error is commonly used to assess model performance. RMSE 

computes the square root of the average squared difference, 

whereas MAE measures the average absolute difference 

between expected and actual values. Because they penalize 

large errors more harshly than the MAE, the MSE and RMSE 

are more susceptible to outliers.      

 RMSE = √(MSE) (4) 

4.5. R-squared Error (R2) 

The percentage of the dependent variable's variation that 

can be predicted by the independent variables is shown by this 

statistical metric. To calculate the R-squared (R²) value from 

the RMSE, you need the total variance (SST) of the observed 

values. First, Calculate RSS (Residual Sum of Squares), then 

calculate SST (Total Sum of Squares): 

R Square = 1 − (RSS/SST) (5) 

 

4.6. PRED (n) Accuracy of Prediction 

In addition, a model must be accurate to within 25% of 

cases, or 75% of the time [33]. To find the accuracy rate 

PRED(n) (represented by n), divide the total number of data 

points in a data set that has an MRE of 0.25 or less 

(represented by k) by the total number of data points in the 

data set. The derived equation is PRED (n) = k/n, where n = 

0.25 [30]. PRED(n) frequently displays the average 

percentage of guesses that were within n percent of the actual 

values. PRED = 50%, for example, suggests that half of the 

estimates are within 30% of the real if there are N datasets. 

MREi<=n/100,then 

PRED(x) = (
100

N
) ∗ ∑ i … N1,  else 0~   (6) 

The anticipated estimated value is closer to the actual 

estimate, the lower the MMRE value, and vice versa. 

Reviewing previous research on software cost assessment is 

being done [31]. Over the past ten years, a number of meta-

heuristic approaches for software cost estimates have been put 

into practice. Using deep learning techniques for software 

project development cost estimation may result in significant 

prediction errors due to a number of important factors. Despite 

their great accuracy and flexibility, deep learning models are 

not resistant to large and consistent changes in project costs. 

Understanding the reasons for and features of these errors is 

necessary to improve model reliability and decision-making. 

Significant prediction errors in deep learning-based cost 

estimation are caused by model design, data limitations, and 

real-world project uncertainty. Beyond simply improving 

model performance, identifying, assessing, and correcting 

these errors is essential. 

The proposed deep learning model achieved superior 

accuracy in software cost estimation compared to state-of-the-

art methods, such as traditional machine learning algorithms 

and deep learning architectures. Research on the optimization 

of software cost estimation has computed the efficacy of 

metaheuristic algorithms. The author carried out an 

exploratory longitudinal case study in [32] [33]. Semi-

structured interviews and archival research were used to 

gather data. The accuracy of effort estimation is increased by 

the two-stage estimation procedure, which re-estimates the 

analysis step.  

In software evaluation, undervaluation is the predominant 

trend, and work overspending is more common in less 

experienced teams. Researchers have identified several 

limitations in the literature, and our experiment has shown that 

the majority of researchers overlook the preprocessing 

processes. In addition to these restrictions, attribute selection 

is a significant restriction that directly impacts memory 

utilization and outcomes. Thus, in order to get beyond these 

restrictions, we do these simple actions (Figure 5). These 

methods collectively ensure that deep learning models used 

for cost estimation in software projects are not only accurate 

but also trustworthy, transparent, and repeatable, which is 

essential in real-world decision-making scenarios. 

 

5. Experiments and Results 
This section presents the outcomes of the study carried 

out in an organized way for cost estimation of a software 

project.  

5.1. Datasets Description 

5.1.1. Desharnais Dataset 

Since their existence would have affected the accuracy of 

the findings, researchers decided to leave these projects out of 

the estimation process. 77 software projects were finished 

after the data preprocessing stage. 

5.1.2. Maxwell Dataset 

One of the biggest commercial banks in Finland provided 

the Maxwell dataset, which consists of 62 projects with 23 

attributes; a piece gives the Maxwell dataset a thorough 

explanation.  

5.1.3. Kitchenham Dataset 

The Kitchenham dataset, compiled by Kitchenham and 

her colleagues, encompasses data from multiple sources, 

including proprietary and public domain projects.  
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Experiment Design (Figure 5) 

• Apply Feature Selection Method 

• Ensemble Learning Methods 

• Computing the results 

 
Fig. 5 Experiment setup for software cost estimation 

5.2. Extracting Features for Estimating Software Costs 

When creating models to estimate software project 

costs, feature extraction is a critical step in the process. The 

Word2Vec approach is used in this work to extract pertinent 

features from Desharnais, Kitchenham, and Maxwell 

datasets. After they have been retrieved, these characteristics 

are added to the cost calculation procedure. Table 2 below 

presents the characteristics that were extracted from the three 

datasets and gives a detailed summary of the attributes that 

may be taken into account during the cost-estimating 

process. By using these characteristics as input variables, 

prediction models that can more precisely and accurately 

estimate the costs of software projects may be developed. 

Table 2. List of features extracted using Word2Vec 

Datasets Extracted Features 

Desharnais 

Project, Points NonAdjust, ManagerExp, 

Adjustment, YearEnd, Length Transactions, 

PointsAjust, Effort, TeamExp, 

Maxwell 

Effort, Har, Year, Duration, App, T14, 

Source, Nlan, T06, T05, T15, T09, Size, 

Time 

Kitchenham 
Adjfp, Estimate method, Client code, 

Estimate, Projecttype, Duration, Effort 

5.3. Selecting Features for Estimating Software Costs 

It is critical to select features for a model if one is to build 

reliable and reasonable software cost-estimating models. In 

order to obtain the most relevant features while mitigating the 

risk of overfitting the predictive models, the study observed 

the RFE methodology to glean the most salient features from 

three datasets. RFE is quite popular in regression modeling for 

regularization and feature selection. It works by successively 

eliminating elements that, according to a pre-defined rule, are 

deemed unnecessary or redundant. These repeated steps lead 

to a shorter and clearer explanation of the model, which 

finalizes with the strongest predictors that remain in the 

model. After the RFE method, features that were gathered 

from three datasets are shown in Table 3.  

Table 3. List of features using RFE 

Dataset Selected Features 

Desharnais 
Project, Transactions, Effort, TeamExp, 

PointsAjust, PointsNonAdjust 

Maxwell 
App, Effort, Har, Source, Nlan, T05, T09, 

T15, Year, Duration, Time, Size 

Kitchenham 
Effort, Project type, Client code, Duration, 

Estimate, Adjfp 

Table 2. Each dataset is represented by a row in the table, 

while the columns indicate the specific features assigned to 

each dataset. These features were chosen because they have 

the potential to greatly contribute to accurate software cost 

prediction. By adding these selected features into predictive 

models, the software cost-estimating process can benefit from 

a more robust and informative collection of input variables, 

resulting in higher cost estimation accuracy. 

5.4. Performance Evaluation Outcomes on Various ML 

Models 

This section discusses the performance metrics of various 

ML models on all three datasets. It describes different kinds of 

errors calculated for each model. 

5.4.1. On the Desharnais Dataset 

Different ML models, including LR, DT, SVM, and 

Ensemble, were evaluated on the Desharnais dataset using 

various performance metrics, as shown in Table 4. 

Table 4.  Error metrics obtained on the desharnais dataset 

Error Metrics MAE R2 RMSE  
LR 0.263 0.778 0.353 

DT 0.432 0.532 0.372 

SVM 0.331 0.804 0.331 

Ensemble 0.336 0.798 0.241 

Figure 6, given below, illustrates a comparison of 

different ML and DL models based on error metrics across the 

Desharnais dataset. It further emphasizes the performance 

variations among the models, highlighting their strengths and 

weaknesses in predicting software project costs. 

Datasets  

(Desharnais, Maxwell, and Kitchenham 

datasets) 

Pre-Processing 

Feature Selection 

Model Validation 

Model Evaluation 

Model Comparison 
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Fig. 6 Performance metrics comparison on the desharnais 

 

5.4.2. On Maxwell Dataset 

Various ML models were evaluated on the Maxwell 

dataset using various performance metrics, as shown in Table 

5. Error metrics for various ML models applied to the Maxwell 

dataset are summarized in Table 5.  

Table 5.  Error metrics obtained on the maxwell dataset 

Error Metrics MAE R2 RMSE 

LR 0.201 0.929 0.275 

DT 0.326 0.761 0.406 

SVM 0.202 0.929 0.274 

Ensemble 0.194 0.930 0.270 

 
Fig. 7 Performance metrics comparison on the maxwell 

5.4.3. On Kitchenham Dataset 

Various ML models were evaluated on the Kitchenham 

dataset using various performance metrics, as shown in Table 

6. 

Table 6. Error metrics obtained on the kitchenham dataset 

Error Metrics MAE R2 RMSE 

LR 0.483 0.607 0.588 

DT 0.929 0.017 0.706 

SVM 0.698 0.447 0.537 

Ensemble 0.658 0.507 0.241 

Figure 7 depicts the error metrics of several ML models 

and a comparative analysis of the performance of each model, 

shedding light on their effectiveness in software cost 

estimation on the Maxwell Dataset. It examines relevant 

features obtained from extraction and selection and results 

obtained by evaluating ML models for estimation. Machine 

learning and Deep learning algorithms considered for 

estimation are FFN, RNN, LSTM, CNN, and SVM. Table 6 

displays the performance measures of the machine and deep 

learning algorithms of different datasets. Figure 8 displays a 

graphical representation of the Mean Absolute Error, Mean 

Square Error, Root Mean Squared Error, and R-squared of the 

kitchenham dataset [34] [35] [36]. 

 
Fig. 8 Performance metrics comparison on the kitchenham 

 

5.6. Performance Evaluation Outcomes on Various DL 

Models 

Incorporating perspectives from relevant stakeholders 

provides a well-rounded and practical view of the application 

of deep learning (DL) in software cost estimation. Feature 

engineering should involve technical team input to include 

relevant software metrics (e.g., cyclomatic complexity, reuse 

ratio). DL outputs should be integrated with visualization and 

reporting tools (e.g., dashboards) to communicate uncertainty 

and assumptions clearly. Demonstrate long-term cost savings 

and risk reduction through case studies or pilot projects using 

DL models. Different DL models, including CNN and LSTM, 

were evaluated on the Desharnais, Maxwell, and Kitchenham 

datasets using various performance metrics, as shown in Table 

7. 
Table 7. Maxwell dataset 

Layer Type Output Shape Param # 

conv1d_1 (conv1d) (None, 26, 64) 192 

Flatten_1 (Flatten) (None, 1664) 0 

dense_3 (Dense) (None, 50) 83250 

dense_4 (Dense) (None, 25) 1275 

dense_5 (Dense) (None, 1) 26 

5.6.1. Effort Estimation Using CNN Model 

Dataset: CNN Model R-squared, MSE, and RMSE for 

Maxwell Dataset (Table 7), Kitchenham Dataset (Table 8), 

and Deshanair Dataset (Table 9) and Figure 9 represent 

CNN model on different datasets [37] [38]. 
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Table 8. Kitchenham dataset 

Layer Type Output Shape Param # 

conv1d_2 (conv1d) (None, 266, 64) 192 

Flatten_2 (Flatten) (None, 17024) 0 

dense_6 (Dense) (None, 50) 851250 

dense_7 (Dense) (None, 25) 1275 

dense_8 (Dense) (None, 1) 26 

Table 9. Deshanair dataset 

Layer Type Output Shape Param # 

conv1d (conv1d) (None, 11, 64) 192 

flatten (Flatten) (None, 704) 0 

Dense (Dense) (None, 50) 35250 

dense_1 (Dense) (None, 25) 1275 

dense_2 (Dense) (None, 1) 26 

 
Table 10. Compare errors on the CNN method with different datasets 

Datasets MAE MSE RMSE R2 

Desharnais 0.1651 0.5045 0.5045 0.8941 

Maxwell 0.7826 0.1893 0.4350 0.6913 

Kitchenham 0.3452 0.1726 0.4155 0.4524 

The Kitchenham, Desharnais, and Maxwell datasets, all 

frequently used in software cost estimation research, are used 

in this comparison of Machine Learning (ML) and Deep 

Learning (DL) techniques using standard performance 

metrics. Evaluation of the Deep Learning Models Next are 

presented the results of the experiments performed on the 

different datasets.  

The following tables demonstrate the performance of 

each model when estimating LSTM and CNN Models using 

the datasets (Desharnais, Maxwell, and Kitchenham datasets), 

respectively. The values of MAE, MdAE MSE, MdAE, and 

RMSE are shown, which were obtained after applying the 10-

fold cross-validation. For all the metrics used, the smaller the 

value, the better the result. 

 
Fig. 9 CNN model on different datasets 

5.6.2. Effort Estimation Using LSTM Model 

Dataset: LSTM Model R-squared, MSE, and RMSE for 

Maxwell Dataset, Kitchenham Dataset, and Desharnais 

Dataset (Table 10) and Figure 10 represent LSTM model on 

different datasets. The Kitchenham, Desharnais, and Maxwell 

datasets, all frequently used in software cost estimation 

research, are employed in this comparison of Machine Learning 

(ML) and Deep Learning (DL) techniques, utilizing standard 

performance metrics (MAE, R², MSE, RMSE). Particularly on 

organized data sets like Maxwell and Desharnais, machine 

learning models like SVR demonstrated a moderate level of 

performance.  

Table 10. Compare errors on the LSTM method with different database 

Datasets MAE MSE RMSE R2 

Deshanair 0.2606 0.6296 0.0968 0.7934 

Maxwell 0.0619 0.0008 0.0285 0.7299 

Desharnais 0.0619 0.0004 0.0219 0.1395 

ML models were consistently outperformed by Deep 

Learning Models (CNN, LSTM), particularly when it came to 

lower MAE, MSE, and RMSE and higher R2 scores.  The fact 

that LSTM performed the best across all datasets demonstrated 

how well it can identify complex nonlinear patterns or 

sequential patterns in graphical software project data. 

 

Fig. 10 LSTM model on different datasets 

6. Conclusion  
This study evaluates the effectiveness of many ML   and 

DL models in software project cost estimation. The findings 

from the data set, obtained through the employment of ML and 

DL models, prove with certainty that dependence on model 

choice plays a significant role in the success and precision of 

estimating software costs. The SVM model fared better than 

other models on the Desharnais dataset as it achieved the 

highest R2 value of 0.804, which showed better prediction 

capabilities. In contrast, the Maxwell dataset showed that LR 

and SVM performed best, with LR achieving an MAE of 

0.483 and R2 of 0.929; SVM, on its part, had an RMSE of 

0.537. Kitchenham dataset reported the second highest R2 of 

0.201 and 0.275 and the lowest MAE and RMSE of the series 

of 0.929 in favor of SVM and LR, respectively, as the best 

reliable models. This research evaluates the methods of 
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Machine Learning (ML) and Deep Learning (DL) in relation 

to the Kitchenham, Desharnais, and Maxwell datasets. It is 

noted that ML models had a significant advantage over Deep 

Learning Models (CNN, LSTM) in achieving lower MAE, 

MSE, and RMSE while also having greater R2 values. Out of 

all models, LSTM excelled the most across all datasets, 

showcasing its capacity to recognize intricate nonlinear or 

sequential graph patterns within project data from software 

engineering. Rankings also follow the same principle; in this 

case, lesser is better. The results of the experiments are 

presented in tables showing the performance of the various 

models when estimating the LSTM and CNN Models using 

the datasets. 

These results emphasize the importance of using relevant 

models trained and tailored to please a specific task in order to 

improve the accuracy of estimating software cost. From the 

evidence presented in the results section, it is evident that 

SVM and LR are notable models that yield satisfactory 

performance metrics across various datasets. Thus, by using 

more accurate cost prediction approaches, using ML [39] 

techniques, in particular, LR and SVM hold the potential for 

improving software project planning and management.  

However, more investigation into deep learning 

architectures and ensemble learning strategies may be 

necessary to improve the precision and resilience of software 

cost-estimating models. The following assessment measures 

are taken into account: R-squared, Mean Absolute Error 

(MAE), Mean Square Error (MSE), and Root Mean Squared 

Error (RMSE). 

 

• RQ1-Related Algorithms Discussion: Table 5 indicates 

that Linear Regression is the second most used algorithm. 

Other potential benefits of Deep Learning techniques 

include automated feature extraction and improved 

performance.  

• RQ2-Related Features Discussion: To display the key 

features and algorithms, groups are formed for features 

and algorithms. This decision preserves clarity but 

eliminates specific information. 

• RQ3-Related Evaluation Parameters and Techniques 

Discussion: The chosen publications provide very few 

evaluation parameters. The majority of studies measured 

the model's quality using RMSE. The evaluation 

parameters MSE, R2, and MAE are additional. 
• RQ4-Related Difficulties Discussion: Based on the 

articles' clear claims, challenges were reported. Much 

more may be stated about the model's accuracy as 

additional data is collected for testing and training.  

Additionally, works collectively emphasize the critical 

factors influencing the success of using deep learning models 

for software cost estimation, including the integration of 

advanced modeling techniques, feature selection, data 

preprocessing, model optimization, and uncertainty 

quantification[40]. Building on the findings of this 

experiment, the next focus will be on developing a crop 

production forecast model based on DL [41]. Deep learning 

approaches have limitations and drawbacks that should be 

carefully considered, even though they may greatly enhance 

software project cost estimation. These challenges include 

identifying requirements, interpretability problems, 

overfitting risk, and the need for sizable, high-quality datasets. 

To get around these restrictions, a mix of methods, such as 

careful data preparation, regularization, and, in some cases, 

the use of simpler models, may improve the effectiveness of 

deep learning for software project cost estimation. 

Additionally, ongoing assessment and improvement of the 

models will ensure that they adapt to changing trends in 

software development [42]. 

Future Work 
To get more thorough findings in the future, researchers 

will continue to experiment with new techniques and integrate 

cloud computing into estimation models.  
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