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Abstract - Fog computing ensures effective request processing and service distribution in real-time IoT applications. Instant 

request processing, reliable execution, and effective QoS are the key requirements of such applications. However, the increasing 

requests and broad coverage of this network can increase the network load. An effective resource allocation and scheduling 

method is required to utilize the available resources and to reduce execution failure. Higher delay and makespan are the key 

challenges of scheduling algorithms and fog computing. In this paper, a multiple-constraint adaptive greedy task scheduler is 

designed to optimize the functioning of task scheduling. The functioning of the proposed scheduling model is divided into two 

stages. In the first stage, a multiple constraint-based resource allocation is done. In this stage, task criticality and resource 

priority-based mapping methods are defined to optimize the resource scheduling. In the final stage, the deadline and delay 

adaptive greedy method is defined to schedule the requests. The comparative evaluation is done against the FCFS, SJF, GTS, 

and DPTS methods. The algorithm reduced the average delay and makespan in comparison with state-of-the-art methods. 

Keywords - Fog computing, Task scheduling, Greedy, Resource allocation, IoT. 

1. Introduction 
IoT networks are location-aware, lightweight, real-time, 

and application-driven networks that support large volumes of 

data flow and request processing in a restricted timeframe. 

Security, reliability, efficient data transmission and low power 

request processing are the key requirements of these networks. 

Cloud computing is a distributed network that ensures high 

processing power and storage with centralized control. 

However, it did not confirm efficient data transmission with 

lower response time. The limited bottleneck of cloud 

computing slows down the request processing and increases 

the error rate in IoT networks. Fog computing is one such 

lightweight technology that provides processing devices and 

data centers at the edge of networks [1]. This distributed 

network is capable of handling real-time situations such as 

heterogeneous devices, heavy network density, bottleneck 

situations, etc. This network ensures flexible communication 

and computing by establishing an interconnection over the 

resources and devices present at the network edge. Fog 

computing performs local resource pooling to perform 

effective data transfer and communication over the network. 

Fog computing is an extension of cloud computing that can 

provide interaction with the cloud as well as confirm the 

request processing at the edge. The service and application-

driven network is very adaptive for smart homes, smart grids, 

V2V networks, smart hospitals and other IoT-based 

applications [2, 3]. 

 

 
Fig. 1 Layered architecture of fog computing 

 

Cloud 

{Storage, Network and 

Computation } 

Fog 

 

{Storage, 
Network, 

Compute} 

Fog 
 

{Storage, 

Network, 

Compute} 

Fog 

 
{Storage, 

Network, 

Compute} 

Users 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Harkesh Sehrawat et al. / IJETT, 73(5), 359-368, 2025 

 

360 

The decentralized architecture and distributed behaviour 

of fog computing are provided in Figure 1. It is a layered 

architecture in which the lowest layer is connected to real-time 

and application-specific users. These users can generate 

requests through various IoT devices to perform their requests. 

These devices capture real-time and environmental 

information and submit the requests to the fog layer. This layer 

contains a variety of controller and processing devices, 

including workstations, gateways, routers, switches, etc. This 

also contains immediate processing devices and storage units. 

The top cloud layer collects and controls all these activities 

over the lower layer and provides centralized processing and 

storage services [4, 5]. Figure 2 shows the task scheduling 

model for fog computing. In an application-based distributed 

environment, a large number of requests are generated by 

users and the environment through IoT and smart appliances. 

The intermediate fog layer processes these requests and the 

request processor to allocate the required processes and to line 

up for task execution. The objective of the task scheduling 

algorithm is to maize the execution delay, execution time and 

cost of execution. The task scheduling algorithm faces various 

real-time challenges, including heavy load and bottleneck 

situations, low power resources, power consumption, etc. [6-

8]. 

 
Fig. 2 Standard task scheduling architecture for fog computing 

A smart grid is one such critical application of IoT that is 

responsible for the distribution of power and energy-related 

services. In this network, the data is collected in the form of 

power requests and the appliance's power usage. Several 

utilities related to IoT techniques are included in the smart grid 

environment. Various elements and behaviours of the smart 

grid are handled by integrating the IoT cloud, data 

governance, and sensor fusion. Business analytics may be 

applied to the obtained data to make decisions about 

monitoring and allocating energy sources. In the case of smart 

grids, IoT is a larger network that communicates at various 

levels to enhance energy distribution. The communication 

traffic in the network also suffers from numerous challenges, 

which may be addressed by conducting traffic maintenance 

and restoration in the IoT network. The Internet of Things 

(IoT) configures networks and devices and gathers data from 

distribution networks. The smart grid system collects various 

sorts of data at different periods. The acquired systematic data 

may be handled and processed in this smart grid to maximize 

the use of available energy and avoid severe load situations. A 

vast amount of data may be acquired since IoT devices capture 

data at regular intervals. The frequency of data collection is 

also an issue when working with a smart grid. It can cause 

complications with storage and consumption. Effective 

infrastructure and storage systems are necessary to handle and 

process this data. If the data is greater, it may have an impact 

on peak-hour performance or the ability to give meaningful 

advantages to customers. The obtained data may be examined 

to determine peak load and price scenarios. The network is 

fitted with smart meters for frequent monitoring and 

identifying consumer behaviour [9, 10].  

1.1. Research Contribution 

This paper provides a greedy constraint adaptive fog 

computing model for optimizing the functioning of task 

scheduling. The main contributions of the proposed model are 

listed below: 

• A criticality and deadline adaptive resource allocation 

method is integrated with the prior stage to reduce the 

failure probability. 

• A multi-objective greedy algorithm is applied within the 

second stage to obtain the sequence for each resource and 

to reduce the execution delay.  

• The model was applied under deadline consideration so 

that starvation situations are avoided.  

• The proposed model is validated against conventional and 

state-of-the-art methods under delay, execution time and 

execution ratio measures. 
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algorithm for fog computing. In this section, a brief 

introduction to fog computing architecture and the 

requirements of task scheduling is provided. Various 

challenges of task scheduling and fog computing are 

discussion discussed in this section. In section 2, the research 

contributions of various researchers to optimize the behaviour 

of task scheduling and fog computing are provided. Various 

optimization methods and models investigated by the 

researchers are discussed. In section 3, the proposed multiple-

constraints adaptive task scheduling model is provided and 

discussed. The algorithm and functional process of the 

proposed model are discussed. In section 4, the experimental 

analysis and results are provided. The significance of the 

proposed model is validated in this section. In section 5, the 

conclusion and future scope are provided. 

2. Related Work 
This section provides a study on various optimization 

models and techniques proposed by the researchers to 

optimize the effectiveness and reliability of task scheduling. 

Saif et al. [11] proposed a multi-objective grey wolf 

optimization method to reduce energy consumption and delay 

in cloud computing. This model incorporated a non-Pareto 

dominance solution within the conventional hunting method 

of GWO to optimize its behaviour within task scheduling. The 

dynamic positioning of prey and wolves was considered under 

parametric constraints. The fitness function is defined with 

delay and energy consumption parameters. This work did not 

consider heterogeneity in requests and resources. The load 

imbalance and resource utilization were not analyzed in this 

work. Yeh et al. [12] proposed a local search analysis-based 

Bi-objective simplified swarm optimization system to 

enhance the effectiveness of task scheduling. This algorithm 

is integrated with a fast elite selecting mechanism to set up a 

non-dominating sorting of tasks with lesser time complexity. 

This hybrid algorithm generated a time-effective solution to 

the task scheduling problem and reduced the execution time 

and delay. The author did not investigate the work against a 

heavy load situation. The task priority and heterogeneity of 

resources were not considered in this work. Khan et al. [13] 

proposed a delay-sensitive and modified particle swarm 

optimization (MPSO) based method to optimize the task 

scheduling functioning in load balancing constraints. This 

algorithm enhanced the performance of task processing under 

energy consumption, cost, network bandwidth and delay 

parameters. The resource utilization was improved by up to 

80% in this algorithm. The request and resource level 

heterogeneity was not considered in this research. Dai et al. 

[14] addressed the complex modeling challenges of fog 

computing and provided a multi-objective solution for this 

problem. The uncertainty problem of fog computing was 

resolved by using a dynamic priority mechanism. The multi-

objective optimization model is integrated using weight 

adjustment to reduce the delay and energy consumption. This 

multi-objective model reduced the task execution cost and 

improved resource utilization in a heterogeneous 

environment. Jakwa et al. [15] investigated a deterministic 

spanning tree and modified the particle swarm optimization 

algorithm to optimize the task scheduling. This scheduler 

performed the resource allocation and managed the resources. 

This algorithm provided a load-balanced method to handle the 

heavy load situation of the IoT network. The algorithm was 

effectively defined for a heterogeneous environment and 

improved the service execution. The proposed algorithm 

reduced the energy consumption and response time. Liu et al. 

[16] provided a meta-heuristic hybrid scheduling algorithm to 

reduce the delay and energy consumption in fog computing. 

This hybrid algorithm is the combination of an artificial bee 

colony algorithm and a particle swarm optimization 

algorithm. Particle swarm optimization was used for 

optimizing the resource allocation under load balancing. This 

algorithm reduced the energy and computation time while 

processing a single fog cluster. In the second stage, an 

artificial bee colony algorithm was used to optimize fog 

computing. This resource scheduling method reduced the 

energy consumption and execution delay effectively against 

state-of-the-art methods. 

Some researchers analyze the task processing history as 

the key factor in making decisions on resource allocation and 

task scheduling. They used machine learning and deep 

learning models and methods to identify the patterns and 

optimize the task scheduling. Iftikhar et al. [17] provided an 

effective task-scheduling model called Hunterplus for fog 

computing. This model integrated a recurrent bidirectional 

unit within a Gated Graph Convolutional Network (GGCN) to 

optimize the resource allocation and task scheduling methods. 

The experimental results confirm the reduction in energy 

consumption and task completion time by 17% and 10.4%. 

This work did not provide experiments under scalability and 

reliability considerations. Sharma et al. [18] investigated a 

two-stage model to optimize the task scheduling for a smart 

home-based fog computing architecture. In the first stage of 

this model, the usage history analysis and power requirement 

prediction were done using the Naive Bayes model. In the 

second stage, the Ant colony Optimization and Particle swarm 

optimization-based hybrid model is applied to optimize the 

behaviour of task scheduling. The analysis results identified a 

significant improvement achieved in terms of reduced latency, 

low power consumption and effective utilization of network 

resources. This work did not handle heavy loads and 

bottleneck situations. Imbrahim et al. [19] provided an 

effective solution by utilizing the limited capacity of 

computing resources. The author used a multi-objective deep 

reinforcement learning method to handle the load, task priority 

and node distance parameters. The author worked on task 

allocation scheduling behaviour by using agents of deep 

reinforcement learning. The method was analyzed against 

challenging scenarios and achieved significant results in terms 

of effective task completion time, transmission delay, 

propagation delay, processing delay, makespan and storage 

utilization. 
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Raju et al. [20] used the reinforcement learning model 

with mixed integer and non-linear programming to optimize 

fog computing for vehicular networks. The algorithm 

considered the vehicle mobility, resource limit and task 

deadline challenges in this work. The adaptive and intelligent 

modeling-based method reduced the delay by 12% and energy 

consumption by 14% against state-of-the-art methods. 

Choppara et al. [21] used the reinforcement learning model by 

effective placement of nodes. The model was defined for 

optimizing the delivery of healthcare services. The positional 

behaviour of architecture was improved under a limited 

resource specification. The model also computed the resource 

demand. The model was tested on different scenarios, and a 

dynamic learning method was applied to optimize the task 

execution. Sui et al. [22] proposed Mayfly based fusion 

algorithm under multiple parameter-based analysis. The 

proposed algorithm improved the diversity and efficiency by 

including global learning and coefficient-driven mapping. The 

algorithm reduced the operating cost and time. The energy 

consumption and communication delay were also reduced. 

Some of the recent methods proposed by research for 

optimizing task scheduling methods are provided in Table 1.  

Table 1. Recent task scheduling meta-heuristic and optimization methods 

Author Task Scheduler Significance Limitation 

Kumar et al. 

[23] 
Improved Dingo Optimization 

Optimized makespan time, 

reduced VM failure rate, 

reduced degree of 

imbalance. 

Heterogeneity was not 

considered in tasks and 

resources. 

Tran-Dang et al. 

[24] 

Dynamic Collaborative Task Offloading 

with parallel computation to optimize task 

execution. 

Reduced Average Delay, 

Effective for 

Heterogeneous 

environment, Improved 

Utilization ratio 

Scalability was not 

considered in the 

experimental evaluation. 

Mohammadzadeh 

et al. [25] 

Hybrid discrete Symbiotic Organisms 

Search-Grasshopper Optimization 

Algorithm (HDSOS-GOA) was proposed. 

SOS improved search capability, and GOA 

improved workflow scheduling. 

Reduced the energy 

consumption and number of 

VMs required, Improved 

Energy Utilization 

Work was not validated 

in a heterogeneous 

environment. 

Khan et al. [26] 

Ripple Induced Whale Optimization 

Algorithm for utilizing the ripple effect to 

schedule independent tasks 

Minimize makespan and 

energy consumption, 

maximize throughput 

A solution for the Load 

imbalance problem was 

not provided 

Tian et al. [27] 

Hybrid Ant Lion Optimization was defined 

with a generation hopping stage to handle a 

diversity of environments. 

Improved convergence 

speed, improved accuracy, 

reduced latency and energy 

consumption. 

Varied and heavy load 

situations were not 

experimented with. 

Kumar et al. [28] 

Combined Electric Fish Optimization 

(EFO) and Earthworm Optimization 

Algorithm (EOA) to handle heterogeneous 

workload and QoS 

Improved efficiency, 

Reduced Energy 

Consumption, and Reduced 

Total Cost 

No predictive method 

was included, and 

workflow analysis was 

not considered 

Saad et al. [29] 

Particle swarm optimization and Genetic 

algorithm-based hybrid methods were 

provided to provide a compelling solution 

to task scheduling. 

Reduced Execution time, 

Improved response time, 

Improved performance of 

task completion 

Heavy load situations 

and priority in tasks and 

resources were not 

adopted. 

3. Proposed Multiple-Constraint Adaptive 

Greedy Task Scheduler 
In this paper, a multiple-constraint adaptive greedy 

method is proposed to optimize the efficiency and reliability 

of fog computing. The functional capability of this model is 

divided into two main aspects. The first aspect is the 

constraints that include performing effective resource 

allocation that will avoid switching between the fog devices 

and considering the deadline so that the task will be executed 

before any cut-off time. The second aspect associated with this 

work is the greedy approach that is applied to the key 

parameters or objectives of the task scheduling method. The 

greedy approach is applied to the average delay and execution 

time parameters. The functional stages of this proposed model 

are provided in Figure 3.  

This model is implemented between the end-user layer 

and the fog layer. The input to this model is in the form of user 

requests that are generated either by the users or captured by 

the IoT devices from the environment. Each of the generated 

requests or tasks is defined with multiple parameters, 

including task_time, task_criticality and task_length. 
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Fig. 3 Multiple-constraint adaptive greedy task scheduling model for 

fog computing 

These requests are processed, and the task priority is 

computed in the first stage of the proposed algorithm. The 

prioritization method used in this work is provided in equation 

(1). 

 

Task.Priority = task_criticality * (1 - task_deadline 

/max_deadline) (1) 

The task_criticality is a key factor used to decide the 

priority of the task. The tasks associated with some real-time 

phenomenon or under a hard deadline constraint are 

considered high-priority tasks. These tasks are required to be 

allocated and executed on fog devices. The fog devices are 

defined within the fog layer with specifications of certain 

memory, processing speed and capacity. Another dynamic 

measure computed for each fog device is the task completion 

ratio. It is a history analysis-based measure that identifies the 

number of tasks successfully executed and before the 

deadline. Based on these capacity and dynamic measures, the 

priority of the fog devices is computed. The priority 

computation of fog devices is provided in equation (2). 

Set FNodes.Priority = w1* Memory + w2 * Task 

Completion Ratio + w3 * FNodes.Procss (2) 

The Fog device with higher priority, processing speed and 

higher task completion ratio is considered a highly reliable and 

effective fog device. A fog device with higher priority can 

guarantee the successful execution of user tasks. Here, w1, w2 

and w3 are the weights used to decide the priority of tasks. To 

identify the best values of w1,w2, and w3, multiple 

experiments are conducted, and the task completion ratio for 

each experiment is computed. The experimentation results for 

identifying the weights with the maximum task execution ratio 

are provided in Table 2. The results show that the maximum 

execution ratio achieved for this work is 96.43% for weights 

w1=0.4, w2=0.3, w3=0.3.  

Table 2. Experimental results for effective weight evaluation 

w1 w2 w3 Task Execution Ratio 

0.1 0.1 0.8 45.76 

0.1 0.2 0.7 49.67 

0.1 0.3 0.6 51.45 

0.2 0.1 0.7 53.56 

0.2 0.2 0.6 56.77 

0.2 0.3 0.5 59.32 

0.3 0.1 0.6 65.31 

0.3 0.2 0.5 73.47 

0.3 0.3 0.4 78.49 

0.4 0.1 0.5 83.54 

0.4 0.2 0.4 87.64 

0.4 0.3 0.3 96.43 

0.5 0.1 0.4 88.43 

0.5 0.2 0.3 82.21 

0.5 0.3 0.2 74.35 

0.6 0.1 0.3 70.04 

0.6 0.2 0.2 64.67 

0.6 0.3 0.1 51.34 

0.7 0.1 0.2 48.97 

0.7 0.2 0.1 46.33 

0.8 0.1 0.1 42.84 

Now, to perform the resource allocation, the request for 

resource mapping is under the multiple constraint-based 

method. According to these constraints, the requests are 

categorized based on the priority. While allocating the tasks to 

resources, a ratio of highly critical, medium critical, and low 

critical tasks is considered. The tasks with more number of 

critical and high-priority tasks are allocated to the high-

priority resources. Similarly, the tasks with low priority and 

criticality are allocated to the low-priority resources. Once 

allocation is done, the greedy-based scheduling method is 

applied to each fog device to set up the order of task execution. 

For this greedy rule, each task is described in the ratio of 

deadline and delay parameters. This task ratio feature is 

provided in equation (3). 

Task.Ratio = task.Delay / Task.DeadLineDiff  (3) 

The objective of this greedy method is to minimize the 

delay and the failure ratio. According to the proposed 

algorithm, the allocated tasks are executed in order of the 

Ratio parameter. The algorithmic detail and behaviour of this 

greedy approach are provided in Algorithm 1. The statistical 

measures and environmental setup are considered under some 

observations and assumptions. The assumptions considered in 

this work are provided below. 

• The tasks executed by the users are independent, and their 

execution will not be affected by other tasks.  
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• A user can generate multiple requests, so several requests 

and users can be different.  

• The deadline is considered a critical factor. The tasks 

executed after the deadline will be considered as failed 

execution. 

• The re-execution of tasks is not considered in this work. 

In case of failure, the task will be re-generated by the user.  

• The application of the task is not defined. 
 

The tasks with a lower ratio are executed first. The 

proposed algorithm is simulated on iFogSim environment 

with multiple tasks and fog nodes. Multiple experiments are 

conducted with different configurations and tasks. The 

analysis results are provided in the next section.  

Algorithm 1: Multiple-constraint Adaptive Greedy 

Scheduler (Tasks, FNodes) 

1. Acquire Memory, Task Completion Ratio, and 

Processing Speed for FNodes 

 [Obtain the resource features] 

2. Set FNodes.Priority = w1* Memory + w2 * Task 

Completion Ratio + w3 * FNodes.Process 

 [Compute the priority factor for each task] 

3. Acquire Deadline, Criticality, and Expected Task 

 Duration for Tasks 

 [Obtain Task Features] 

4. Categorize the tasks under deadline and criticality 

parameters. 

5. Apply constraints for allocating tasks to available fog 

devices with a specific ratio of different criticality 

levels of tasks. 

6. For i=1 to FNodes.Length 

 { 

7. Set the Greedy Rule  Minimize 

∑ 𝐹𝑁𝑜𝑑𝑒(𝐹𝑛𝑜𝑑𝑒(𝑖).𝑇𝑎𝑠𝑘𝑠.𝑙𝑒𝑛𝑡ℎ
𝑗=1 𝑖). 𝑇𝑎𝑠𝑘𝑠(𝑗). 

 Delay/FNode(i).Tasks(j).DeadLineDiff 

9. Arrange FNodes(i).Tasks in order of increasing 

 Greedy Factor 

10. Execute FNodes(i).Tasks and Record the 

 Performance Measures 

} 

Algorithm-1 defines the multi-constraint-based greedy 

scheduler for optimizing the performance of task execution in 

fog computing. This algorithm accepts the resources as 

FogNodes and tasks as user requests. The algorithm uses the 

statistical measures on both the resource and user ends to 

perform effective allocation and scheduling. The resource 

features, such as capacity, processing speed and history 

record, were acquired for resources. Based on this, the priority 

of fog nodes is computed. Another analysis is performed on 

tasks by obtaining the criticality level, task duration and 

deadline. The tasks are categorized based on deadline and 

criticality measures. Now the ratio-specific analysis is applied 

for allocating the tasks to specific fog devices. The greedy rule 

is defined to minimize the delay and increase the execution 

ratio on the same fog device. The greedy factor is computed, 

and tasks are executed in this greedy order. The experimental 

analysis and evaluation to analyze the performance of the 

proposed model is provided in the next section.  

4. Results and Discussion  
This paper proposes a multiple-constraints adaptive 

greedy method to optimize the task scheduling for fog 

computing. The algorithm was simulated using the iFogSim 

simulator. When operating in this environment, the input is 

obtained via Internet of Things devices or nodes that are 

connected to the application environment. In addition to being 

non-preemptive, the requests that are approved are diverse. 

The simulation is carried out on a system with an Intel-I5 

processor operating at 3.1 GHz. This device comes equipped 

with 8 gigabytes of random access memory (RAM), 4 

megabytes of cache, and an integrated iFogSim Toolkit. The 

makespan, failure rate, and average delay metrics are used in 

the comparative evaluation that is carried out. The initial 

metric examined in this study is Average Delay. Delay is 

defined as the disparity between the time of arrival and the 

time of execution of a job. Equations (4) and (5) denote the 

calculation of Delay and Average Delay.  

Delay = Time-of-Execution - Time-of-Arrival        (4) 

Average delay = 
∑ 𝐷𝑒𝑙𝑎𝑦𝑖𝑁

𝑖=1

𝑁
  (5) 

 

N represents the number of tasks. 

Another performance metric utilized in this experiment is 

the average turnaround time or average execution time. The 

turnaround time is the difference between job completion time 

and the time of arrival. The execution time and average 

execution time are denoted in equations (6) and (7). 

 Execution Time = Time of Completion – Arrival Time  (6) 

 

AverageExecutionTime = 
∑ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑖𝑁

𝑖=1

𝑁
 (7) 

 

N represents the number of tasks or requests created 

during a session. 

A task is deemed unsuccessful if it is not completed 

before the deadline. The Failure Rate (FR) metric quantifies 

the ratio of failed tasks to the total tasks throughout the 

session. In order to estimate the performance of scheduling 

algorithms, the most frequent measure that is used is called 

makespan. The real amount of time that the algorithm required 

to complete the task is what is being referred to here. In this 

work, the average makespan is taken into consideration. By 

calculating the average number of tasks that are not completed 

before the deadline, the failure rate may be determined. The 

comparative evaluation is conducted against First Come First 
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Serve (FCFS), Shortest Job First (SJF), Greedy based Task 

Scheduler (GTS) and Dynamic Programming based Task 

Scheduler (DPTS).  

Figure 4 provides the comparative evaluation of the 

proposed multiple-constraint-based greedy method against the 

average delay measure in varied task load-based scenarios. 

For this evaluation, multiple experiments are conducted with 

100 to 500 tasks and 30 fog devices. The line graph shows that 

the average delay obtained for FSCS and SJF is are worst. The 

average delay obtained for all these experiments is 284.12 ms 

for FCFS, 272.68 ms for SJF, 234.57 ms for GTS and 216.58 

ms for DPTS. The proposed algorithm minimized the average 

delay of 185.15 ms and outperformed all the existing methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4 Average delay analysis (Varied task load) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Average delay analysis (Varied number of fog devices) 

Another experiment is conducted in this work against a 

varied number of fog devices and a fixed number of requests. 

In this experiment, Multiple tests are carried out for this 

evaluation, each with 10 to 50 fog devices and 300 requests. 

Fig 5 illustrates that the average latency for FSCS and SJF is 

the worst, with a higher average delay. The average delay 

derived from all of these studies is 312.08 ms for FCFS, 

280.12 ms for SJF, 230.91 ms for GTS, and 190.15 ms for 

DPTS. The suggested strategy reduced the average latency to 

168.65 ms and surpassed all existing solutions. 

Another parameter considered to validate the reliability of 

the proposed model is the Successful execution ratio. A task 

execution is called a failure if the allocated fog device is 

unable to execute it or the execution is not performed within 

the specified deadline. An experiment is carried out in this 

work to validate the reliability of the proposed algorithm 

under a varied number of requests and a fixed number of fog 

devices. This experiment involves many tests, each with 100 

to 500 requests and 30 fog devices. Figure 6 shows that the 

successful execution rate of FSCS and SJF is the worst. The 

average successful execution rate calculated from these trials 

is 72.31% for FCFS, 77.33% for SJF, 82.16% for GTS, and 

86.85% for DPTS. The recommended technique improved the 

successful execution rate up to 90.47% by outperforming all 

other alternatives. 
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Fig. 6 Successful execution ratio analysis 

Another measure examined to assess the suggested 

model's efficiency and reliability is the makespan. This paper 

includes an experiment to evaluate the proposed algorithm's 

dependability under varying numbers of queries and a fixed 

number of fog devices. This experiment includes many tests, 

each with 100 to 500 requests and 30 fog devices.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7 Average makespan analysis (Varied task load) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 Average makespan analysis (varied number of fog devices) 
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According to Fig 7, the FSCS and SJF have recorded the 

lowest makespan. The average makespan based on these trials 

is 3.93 sec for FCFS, 4.03 sec for SJF, 3.37 sec for GTS, and 

3.31 sec for DPTS. The proposed strategy reduced the 

makespan by up to 3.07 and improved the efficiency of the 

proposed algorithm. 

 

Another experiment is carried out in this work with a 

variable number of fog devices and a set number of requests. 

This experiment involves many tests, each with 10 to 50 fog 

devices and 300 requests. Figure 8 shows that the average 

makespan for FSCS and SJF is the worst, with the longest 

average makespan. The average makespan calculated from 

these trials is 3.91 sec for FCFS, 3.94 sec for SJF, 3.24 sec for 

GTS, and 3.29 sec for DPTS. The recommended technique 

lowered the average makespan to 2.94 sec, outperforming all 

other alternatives. 

5. Conclusion  
This paper investigates the key challenges of fog 

computing and presents a delay and makespan adaptive task 

scheduling algorithm. The paper provided a multiple-

constraint adaptive greedy algorithm to maximize resource 

allocation and task scheduling in a heterogeneous fog 

computing environment. The model's functional process is 

divided into two components. During the initial step, requests 

for resource mapping and allocation are conducted based on 

task criticality and resource priority. In this stage, multiple 

constraints are defined to perform the allocation. In the final 

stage, the delay and deadline adaptive greedy algorithm is 

defined for scheduling the tasks of all fog devices. The model 

is compared to the FCFS, SJF, GTS, and DPTS algorithms. 

The assignment is duplicated in six different situations to 

represent differing load circumstances. The experiments are 

conducted based on different load conditions. Two scenarios 

were built to validate the performance in different load 

conditions. In the first scenario, the number of resources is 

fixed, i.e. 30, and the number of requests varies from 100 to 

500. The mean delay recorded across all trials is 284.12 ms for 

FCFS, 272.68 ms for SJF, 234.57 ms for GTS, and 216.58 ms 

for DPTS. The suggested approach reduced the average 

latency to 185.15 ms and surpassed all current methods. The 

mean successful execution rates derived from these trials are 

72.31% for FCFS, 77.33% for SJF, 82.16% for GTS, and 

86.85% for DPTS. The proposed approach enhanced the 

success rate to 90.47% by surpassing all previous options.  

The second scenario is defined with a fixed number of 

tasks and a varied number of resources. The number of 

resources varied between 10 and 50. The number of requests 

in this experiment is 300. The mean delay calculated from 

these trials is 312.08 ms for FCFS, 280.12 ms for SJF, 230.91 

ms for GTS, and 190.15 ms for DPTS. The proposed 

technique decreased the average latency to 168.65 ms and 

exceeded all current solutions. The mean successful execution 

rates derived from these trials are 72.31% for FCFS, 77.33% 

for SJF, 82.16% for GTS, and 86.85% for DPTS.  

The proposed approach enhanced the success rate to 

90.47% by surpassing all previous options. The mean 

makespan from these trials is 3.93 seconds for FCFS, 4.03 

seconds for SJF, 3.37 seconds for GTS, and 3.31 seconds for 

DPTS. The proposed technique decreased the makespan by up 

to 3.07 and enhanced the efficiency of the proposed algorithm. 

The results show that the proposed model reduced the 

makespan and average delay effectively and improved the 

performance and reliability against existing methods. In the 

future, the work can be extended by integrating a deep 

learning model to analyze the history and to make predictive 

decisions about resource allocation and scheduling. 
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