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Abstract - Pulmonary tuberculosis is primarily caused by Mycobacterium Tuberculosis (TB) infection. The disease is a common 

clinical respiratory illness with high infectious and fatal incidence, ranking third among all the illnesses globally and gravely 

threatening the patient’s health and life. TB is regarded as a communicable chest disease. The World Health Organization has 

led several TB control projects across the world. In this paper, lung TB detection is proposed using the framework. The datasets 

were collected from the Kaggle repository. The raw image has been de-noised using the Non-Local Wavelet (NLW) algorithm, 

and segmentation has also been done using the CNN algorithm. The best features are selected by using Adversarial feature 

selection, which allows for strengthening the model’s robustness to feature selection. Finally, the classification of TB has used 

Convolutional Neural Networks (CNN) with the modified dense architecture and improved Adam optimization. Adversarial 

methods, NLW and CNN with modified Dense Architecture and improved Adam Optimization techniques are utilized to increase 

the model efficiency and accuracy. TB diagnosis from lung images is very accurate in this technique. Montgomery and Shenzhen 

lung imaging datasets are used to segment and categorize the lung TB. With excellent reliability and performance, the proposed 

framework offers several opportunities to improve the automated TB screening systems. 

Keywords - Classification, Convolutional Neural network, Lung tuberculosis, Non-Local Wavelet, Segmentation. 

1. Introduction 
Tuberculosis (TB) is a contagious disease caused by the 

Mycobacterium tuberculosis. Pulmonary TB most commonly 

affects the lungs, but it can appear in almost any organ. Most 

infectious, and thus potentially fatal, TB is Pulmonary TB 

(PTB). Early recognition and initiation of treatment for TB are 

key components for maximizing patient recovery and 

controlling TB transmission [1]. However, the beginnings of 

TB may be delayed in diagnosis, contributing to further 

prolonged infectiousness of TB, worse patient outcomes, and 

other potential factors such as diagnostic confusion due to lack 

of clinical experience, unavailability of laboratory equipment, 

and radiological errors [2]. Clinical implementable Computer-

Aided Diagnostics (CAD) [3] has also emerged from 

advancements in Deep Learning (DL) to improve TB 

detection with chest X-ray (CXR) automated detection [4-6]. 

These systems provide assistance to healthcare providers to 

sort the hundreds of pre-existing potential normal or abnormal 

lung patterns, thereby allowing early diagnosis and faster 

delivery of care [7, 8]. Although prior methods of detecting 

TB such as CT, MRI, and radiographs, are important in 

establishing TB cases, CXRs continue to be one of the most 

used screening methods due to the rapid pictureability capture 

rate, ubiquity of existence and low cost among healthcare 

professionals within resource-limited settings [9, 10]. Despite 

these developments, challenges continue. There are still errors 

in radiographic interpretation, particularly with early or 

atypical cases, that can result in misdiagnosis or misdirection 

of treatment. Furthermore, chest radiographs can be difficult 

to interpret, often requiring radiology expertise, thereby 

limiting the feasibility of diagnosis in rural or underdeveloped 

settings. The World Health Organization (WHO) advocates 

for screening and biological tests for TB diagnosis, but in 

many cases, radiological evidence is the first stimulus for 

further investigation [13-15]. Some recent studies have shown 

that Machine Learning (ML) [11] and DL [12-14] could 

improve the diagnostic pathway by providing automation for 

image segmentation [15, 16] and classification [17] for lung 

abnormalities such as pneumonia, TB, and nodules. DL-based 

research will continue to be exciting as the datasets continue 

to grow from X-ray imaging, and can scale low-cost and 

accurate Artificial Intelligence (AI)-based diagnostic tools. 

Nevertheless, a significant challenge in the existing literature 

lies with the limited use of advanced preprocessing methods 

as pipeline steps along with sophisticated segmentation and 

classification networks. A majority of the existing methods for 

the analysis of TB images do not account for noise and 

artifacts in images, use generic feature extraction strategies, 

or, therefore, don’t enable the models to generalize across all 

datasets. Similarly, the optimization of a strategy in existing 
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TB diagnostic models is mostly static and incremental, and 

does not account for the non-stationarity of medical images, 

as the features of these images can also change [18]. 

This approach is end-to-end and more robust than 

standard DenseNet or VGG-based models, which frequently 

underperform due to overfitting and limited preprocessing. In 

contrast, a modular approach to the standard DenseNet and 

modify the architecture to improve feature propagation 

inherent in DenseNet, improve transition layers to reduce 

redundancy of model parameters, and introduce more specific 

domain adaptive networks; while decreasing noise, and 

systematic feature selection based on spatial patient anatomy, 

variation from model noise, an adversarial challenge. 

Together, with wavelet-based denoising and adversarial 

feature selection, recognizing the limitations of existing 

literature and contributing an integral layer of analysis, 

accuracy, and reliability for diagnosis [19]. 

1.1. Contribution 

To overcome these issues, this study introduces a hybrid 

DL framework for TB detection that integrates the following 

key innovations: 

• Non-local wavelet preprocessing is applied to de-noise 

and decompose input CXR images, enhancing image 

quality and preserving significant pathological features 

[20]. 

• Convolutional Neural Networks (CNN) are used for the 

segmentation and classification of images obtained from 

the Montgomery and Shenzhen TB datasets, with an 

architecture tailored to lung abnormality detection [21]. 

• A novel adversarial feature selection mechanism is used 

to strengthen feature discrimination, thereby improving 

classification robustness [22]. 

• The CNN classification is further enhanced with modified 

dense network architecture and an improved Adam 

optimizer, which incorporates bias-corrected estimates 

and adaptive learning rates for better convergence and 

accuracy [23, 24]. 

This coordinated effort seeks to close the gap that exists 

in integrated methods of preprocessing, feature selection, and 

optimization in TB detection frameworks. Wavelet denoising 

and deep CNN segmentation with advanced classification 

packages present an important step forward from conventional 

CAD-based models for TB screening. This research outlines a 

new DL framework developed by merging expertise in 

medical imaging and advanced AI technologies for robust TB 

detection applications. The research also highlights the 

importance of a collaborative interdisciplinary approach to 

guide the creation of actionable health interventions that can 

be scaled up, given the needs of the global health system. In 

bringing cutting-edge algorithmic solutions in line with 

clinical realities, the proposed framework acts as an 

intermediary step between machine intelligence and frontline 

medicine, delivering applicable diagnostic support for 

healthcare in resource-constrained settings. This paper’s 

organization is as follows: The introduction about TB 

diagnosis is discussed in Section 1. In Section 2, related works 

on TB are discussed. The methods used for TB diagnosis are 

detailed in Section 3. Section 4 outlines the results and Section 

5 discussions. Finally, the conclusion of this work is discussed 

in Section 6. 

2. Background Study 
M. Ahsan et al. (2019) created a CNN (Conv-Net) based 

on VGG16 to classify CXR images in order to identify TB. In 

contrast to previous work that segmentation of the lung 

regions had to occur prior to model training (usually, but not 

always, involving classifiers like Support Vector Machines 

(SVM), etc.), this study applied VGG16 directly to both raw 

and pre-processed CXR data. They found that VGG16 almost 

performed as well on the raw data as the pre-processed data, 

and then were able to improve the accuracy even further by 

using data augmentation strategies. It is worth noting that this 

study lacked more sophisticated preprocessing or 

optimization; more advanced techniques could help, thus 

allowing for further improvements in performance using 

better denoising and optimization methods. 

H. Arabi et al. (2020) presented the Spatially Guided 

Non-Local Means (SG-NLM) filter, which improves the 

previous Non-Local Means (NLM) denosing algorithm. In 

traditional NLM, similarity searches are constrained by a pre-

defined window; however, in SG-NLM, spatial guidance is 

applied based on the important edges and clustered regions in 

the input image, which facilitates greater extraction of useful 

non-local information. Furthermore, this yielded better noise 

suppression while still preserving the signal in regions with 

long additional edges and repeating patterns. The 

effectiveness of the SG-NLM filter was validated by 

comparing it to standard filters, including (in order): 

traditional NLM, the bidirectional filter, the Bayes Shrink 

wavelet filter and the Gaussian filter, while exploring both 

simulation data and physical phantom studies in a clinical 

environment. SG-NLM yielded greater Signal-to-Noise 

Ratios (SNR) and smaller biases. K. Joshi et al. (2019) 

proposed a two-stage multi-focus image fusion process via an 

NLM technique to enhance quality and limit blur by 

evaluating various images via a series of metrics like cross-

entropy, Peak Signal-to-Noise Ratio (PSNR), and Normalized 

Mutual Information (NMI).  

The multi-focus image fusion trade-off was judged on 

numerous benchmark datasets and consistently yielded results 

that were competitive. Fusion maps utilizing NLM were also 

improved via the NLM method. Improved retention of 

structural details and improved clarity of images were 

achieved from the original images using the proposed strategy. 

All proposed methods were ranked as suitable methods to 

achieve in terms of objective evaluation metrics compared to 
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various traditional methods. J. Ko et al. (2024) completed a 

comprehensive comparative study of various optimizers 

(Adam, AdamW; NAdam; RAdam; and Stochastic Gradient 

Descent (SGD) with weight decay) and their effectiveness on 

lung disease prediction using CXR images. The purpose of the 

study was to gauge which optimizers are more suitable for use 

on Vision Transformer (ViT) based architectures. The 

optimizers had a material impact on prediction performance 

and learning speed. AdamW and RAdam had better 

generalization and convergence stability than other variants 

and were believed to be the most suitable examples of 

optimization for medical image classification tasks. This study 

contributes meaningfully to the understanding of optimization 

methods for DL models in healthcare applications, 

particularly those related to the detection of pulmonary 

disease. 

E. Kotei and R. Thirunavukarasu (2024) in diagnosing TB 

from CXR images; the researchers built the data-efficient 

image converter and DL method, which utilized the Residual 

Network-16 (ResNet-16) model. They used the TBX11K 

dataset, which contains three categories: TB, well, and not TB 

and unwell. The researchers did not use healthy X-rays as that 

class for the negative group, and therefore, they used unwell 

but not TB as that class as a result of clinical cases dealing 

with a large amount of samples of not TB, which caused a 

significant false positive in the model’s prediction. The 

experimental data were partitioned into three sets to build a 

model: training, validation, and testing. The transformer in the 

recommended model learned about the relevant information 

and connected the image tokens through a self-attention 

process. The ResNet-16 component provided the local 

representations by utilizing depth-wise convolution. Thus, this 

reduced the computational costs and hence, improved the 

diagnostic accuracy in performing TB diagnosis. 

J. Liu and Y. Huang (2020) these researchers found that 

using each of the six distinct models in CNNs resulted in 

identical CXR images. Prior to training any CNN models, the 

three different techniques at hand were used. First, the step 

function with a sigmoid function was switched to gain the 

activation function over the entire domain. Second, they had 

chosen the binary cross entropy function instead of the normal 

quadratic cost function for optimization. The greatest CNN 

bias and weights can be obtained by buying. Lastly, they 

computed a complicated classical gradient descent and moved 

immediately to the simpler SGD for training. At the end of the 

studies on six models, the Densenet121 model performed the 

best in classification. Thus, Densenet121 was the best CNN 

model for the diagnosis of TB. Overall, there were some 

limitations; however, the work undertaken for TB diagnosis 

was important and worthwhile. L. Mangeri et al. (2021) 

assessed the diagnostic accuracy of different DL models for 

detecting TB, pneumonia, and COVID-19 from CXR images. 

The study created and compared three CNN architectures: 

VGG19, ResNet50V2, and DenseNet201, to compare their 

classification abilities. Each model was trained over fifty 

epochs with Adam as an optimizer while considering model 

complexity and training speed. Among the three architectures, 

ResNet50V2 outperformed all other architectures consistently 

by providing the most accurate representation of detecting the 

three diseases. They concluded that the architecture of chosen 

models plays an important role in designing effective CAD 

systems for chest conditions. A T. Sahlol et al. (2020) 

examined a hybrid DL approach to append a classification 

label to the X-rays of chest images related to TB. These 

authors implemented a hybridization scheme that combines a 

lightweight CNN (MobileNet) along with Artificial 

Ecosystem-based Optimization (AEO), a feature selector. 

First, MobileNet was implemented to extract deep features of 

the input X-ray photographs regarding TB. Next, the AEO 

algorithm selects the best features by filtering out redundant 

or irrelevant features, hence increasing the accuracy of the 

classification and minimizing the computational complexity. 

Finally, the method was tested using a combination of two 

public datasets pertaining to datasets from Shenzhen Dataset 

1 and Shenzhen Dataset 2. If AEO is combined with machine 

learning, it will dependably outperform (be more accurate 

than) regular CNN models. This classification was better 

because AEO was used to select feature extraction by 

maximizing classification algorithm accuracy, while 

minimizing computational time and improving the efficiency 

and effectiveness of TB. 

L. Stanke, et al. (2020) analyzed the spatial and 

volumetric modeling of objective parameters to investigate the 

effectiveness and durability of medical imaging analysis. The 

research applied a new metric for evaluating the efficiency of 

Wavelet Transformation, and highlighted its ability to 

separate data objects into several spatial/volumetric 

resolutions, contrary to single-filtering methods. With a 

complete bank of filters, Wavelet transformation enhanced 

smoothing capabilities with reduced noise. The study 

displayed the use of 1D EMG signals, some with MRI and CT 

scans, analyzing arterial and musculoskeletal structures, and 

to show the effective spatial and volumetric responses of 

wavelet decomposition. Moreover, statistical evaluations, 

using several noise models, demonstrated the flexibility and 

strength of the wavelet approach for preprocessing medical 

images. S. Stirenko, et al. (2018) proposed a CADx system to 

analyze 2D CXR to detect TB through DL methods.  

The authors trained Deep Convolutional Neural Networks 

(DCNNs) with lossless and lossy data augmentation to 

complicate acknowledge issues regarding limited data and 

misdistributed training datasets. A novel aspect of their 

methods was using the preprocessing step of lung 

segmentation, which in turn improved training outcomes. 

CNNs learning from segmented output images was 

predictively better than trained on raw, non-segmented CXRs, 

and were more stable, thereby validating the role of 

segmentation in better diagnostic accuracy of TB detection.
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Table 1. Comparison table for image de-noising, segmentation, and classification using various datasets  

Authors (Year) Model / Technique Dataset Key Contributions Results / Findings 

S. N. Hankare and 

S. S. Shirguppikar 

(2021) 

CNN Not specified 

Developed a CNN-based 

approach for detecting both 

TB and lung cancer 

Demonstrated dual disease 

detection, but lacks 

performance metrics 

S. H. Karaddi and 

L. D. Sharma 

(2023) 

Pre-trained CNNs 

(ResNet, Inception, 

etc.) 

CXR dataset 

Multi-class classification of 

lung diseases using transfer 

learning 

Achieved high accuracy; 

showed ResNet performed 

best among pre-trained 

models 

N. M. Kumar et 

al. (2023) 

Self-Attention GAN 

+ Capsule Net + 

Sunflower 

Optimization 

Custom lung 

disease dataset 

Proposed a hybrid 

generative + capsule 

architecture optimized with 

the nature-inspired 

algorithm 

Enhanced classification 

performance and 

convergence speed 

A. Pattnaik et al. 

(2019) 
3D CNN 

CT scan images 

(CLEF dataset) 

3D CNN for predicting TB-

related lung deformities 

Demonstrated effective 

deformity prediction in 

volumetric scans 

A. Rachmad et al. 

(2019) 

Spatial Domain 

Filters 

Sputum smear 

images 

Enhanced image quality for 

better TB detection from 

sputum microscopy images 

Improved visibility of 

Mycobacterium TB for 

manual and automated 

analysis 

T. Rahman et al. 

(2020) 

DL + Segmentation + 

Visualization 

ChestX-ray14, 

Shenzhen 

Integrated segmentation 

with classification and Grad-

CAM for interpretability 

Achieved robust detection 

with visual explanations; 

AUC > 0.95 

J. Singh et al. 

(2020) 
Anti-aliased CNN 

Montgomery & 

Shenzhen 

datasets 

Used anti-aliasing layers in 

the CNN to improve edge 

clarity in TB detection 

Achieved ~93% accuracy; 

reduced false positives 

M. Yusoff et al. 

(2021) 

CNN + Dynamic 

Update Particle 

Swarm Optimization 

TB X-ray 

datasets 

Hybrid model using PSO to 

optimize CNN parameters 

dynamically 

Improved classification 

accuracy and model 

adaptability 

2.1. Problem Identification 

The present approaches cannot properly classify the 

medical images. These algorithms are limited by technology 

and are insufficient in training the data. 

3. Materials and Methods 
The first step in this chapter is to compile the Kaggle 

lung TB datasets (Montgomery and Shenzhen). 

Preprocessing the dataset helps to denoise it.  

Following that, CNN is used to segment the de-noised 

data and classify it using the modified dense architecture 

along with improved Adam optimization.  

Non-local wavelet is utilized to denoise the lung x-ray 

images as shown in Figure 1.  

3.1. Dataset Gathering 

This study utilizes two publicly available CXR datasets 

from Kaggle for the prediction of pulmonary tuberculosis: 

Dataset 1: 

https://www.kaggle.com/datasets/raddar/tuberculosis-

chest-xrays-montgomery 

This dataset comprises 138 CXR images sourced from 

the Department of Health and Human Services, 

Montgomery County, Maryland, USA. It contains both 

normal lungs and lungs with TB, which provide reference 

data for TB classification studies. 

Dataset 2: 

https://www.kaggle.com/datasets/raddar/tuberculosis-

chest-xrays-shenzhen  

This dataset consists of 662 radiographs, provided by 

the Shenzhen No.3 People’s Hospital in China. It contains 

well-annotated normal and TB cases of the lungs commonly 

used for research purposes. These datasets were chosen as 

they are publically accessible and highly relevant to the TB 

detection task. 

Each dataset provides a balanced number of normal and 

TB-affected lung samples, which is important for training 

and evaluating DL models. Given the high usage in peer-

reviewed studies, this means that the results from the 

research can be compared, benchmarked, and evaluated 

against other literature, which is important for credibility 

and reproducibility.                      
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Fig. 1 Overall architecture of lung tuberculosis detection 

3.1.1 Ethical Considerations 

Both datasets are made publicly available on Kaggle for 

academic and non-commercial use. They are deidentified, 

ensuring no Personally Identifiable Information (PII) is 

included. Proper acknowledgement of dataset sources has 

been maintained in line with the Kaggle license terms. No 

human subjects were involved directly by the authors, so no 

additional Institutional Review Board (IRB)/ethics approval 

was required for this research. 

3.2. Data Preprocessing 

Data preprocessing includes data cleaning, merging, and 

modification. The first critical step is to locate the relevant 

data and find the missing data. Data preparation increases the 

data quality before proceeding with other tasks. Preparation 

and transformation of raw data into a format suitable data for 

training ML models is called data preprocessing. In this paper, 

the Montgomery and Shenzhen datasets are the for lung image 

preprocessing for the lung TB detection. 

3.3. Non-Local Wavelet De-Noising 

The wavelet transform uses the frequency content of lung 

images to find and remove the noise. According to L. Ebadi, 

et al (2013), nonlinear frequency content follows the image 

processing in the wavelet domain. Using the inverse wavelet 

transform, the hold-out frequency coefficients are translated 

to the spatial domain. Use of appropriate thresholding levels 

is the primary determinant of the wavelet de-noising methods. 

As an additive function of the initial noiseless signal, image 

noise is defined in Equation (1) as. 

I𝑚 (𝑥) =𝑌 (𝑥) + 𝑁 (𝑥) (1) 

Where I𝑚 (𝑥) is the observed lung image, Y (x) is the 

uncorrupted part, and the noise function is N(x). Non-local 

Mean filters rely on facts like symmetric structures, extended 

edges, and similar or repeated patterns in the actual images 

often include the information. Locating regions of a lung 

image have comparable patterns or intensity distributions, and 

the NLM filter is able to decrease the noise. The underlying 

pattern has been preserved by averaging the selected patches, 

which reduces the uncorrelated noise component.  

The proposals combining Non-Local and Wavelet 

improve the advanced noise reduction and also preserve both 

the local and non-local structures of the lung TB image. This 

effectively reduces the noise while preserving the fine details. 

The Non-Local Wavelet coefficients have the potential to 

significantly improve the denoising. The Non-Local Wavelet 

removes the noise based on the similarity throughout the 

whole image (I), while the wavelet transform separates the 

noise at different frequency levels. 
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𝑊 = 𝑊𝑎𝑣𝑒𝑙𝑒𝑡𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝐼) (2) 

In Equation (2) W represents the set of wavelets. After 

decomposition, the NLW technique is used to denoise the 

high-frequency sub-bands to denoise the components and 

maintain the image’s important features. In equation (3), 

Location is p; de-noising value is 𝐼 (p). 

𝐼(𝑝) = ∑ 𝑤(𝑝, 𝑞)𝐼(𝑞)𝑞∈1  (3) 

Where 𝐼(𝑞)  is the intensity of pixel  𝑞 . 𝑤(𝑝, 𝑞)  is the 

weight calculated based on the similarity of patches around the 

pixels 𝑝 and 𝑞. 𝑤(𝑝, 𝑞) is normalized so that  ∑ 𝑤(𝑝, 𝑞)𝐼(𝑞)𝑞  

the similarity is computed using the Euclidean distance 

between the patches surrounding pixels p and q. 

𝑊ℎ,𝑘
𝑁𝐿𝑊 = ∑ 𝑤(𝑘, 𝑙)𝑙 𝑊ℎ,𝑙 (4) 

In equation (4),𝑊ℎ,𝑘 , 𝑊ℎ,𝑙 are the wavelet coefficients at 

position𝑘, 𝑎𝑛𝑑 𝑙. 𝑤(𝑘, 𝑙) is the weight calculated using patch 

similarity in the wavelet domain. 

𝐼𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 = 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑊𝑎𝑣𝑒𝑙𝑒𝑡𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑊𝑙 , 𝑊ℎ,𝑘
𝑁𝐿𝑊) (5) 

Equation (5) combines the Non-Local Wavelet de-noised 

high-frequency coefficient with the original low-frequency 

components to produce the final de-noised lung TB image. 

𝐼𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 =
𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑊𝑎𝑣𝑒𝑙𝑒𝑡𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑊𝑙𝑓 ∑ 𝑤(𝑘, 𝑙)𝑙 𝑊ℎ,𝑙) (6) 

In Equation (6), the low-frequency wavelet coefficient, 

𝑊ℎ,𝑘  is the high-frequency coefficients are denoised using 

Non-Local Wavelet. 𝑤(𝑘, 𝑙)  is the weight based on the 

similarity between wavelet coefficients. 

 
Fig. 2 Non-Local Wavelet (NLW) architecture 

Figure 2 illustrates the Non-Local Wavelet de-noising 

process. Wavelet and Non-Local Means deconstruct the noisy 

input lung TB image, and then the low-frequency image is 

altered by Inverse Wavelet, resulting in the de-noised lung TB 

image. 

Algorithm 1: Non-Local wavelet Algorithm 

Input : Image I from dataset D 

Procedure Steps: 

Step 1 : Data Preprocessing 

Step 2 : Wavelet decomposition 

Split the image into low and high-frequency components 

Step 3 : NLM on Sub-Bands: 

Use Non-Local Wavelet (NLW) de-noising on the high-

frequency components to reduce noise while preserving 

structural details. 

𝐼(𝑝) = ∑ 𝑤(𝑝, 𝑞)𝐼(𝑞)

𝑞∈1

 

Step 4 : Inverse Wavelet Transform 

Reconstruct the image using low-frequency coefficients 

and the NLW de-noised high-frequency coefficients. 

𝐼𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑

= 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑊𝑎𝑣𝑒𝑙𝑒𝑡𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑊𝑙𝑓 ∑ 𝑤(𝑘, 𝑙)

𝑙

𝑊ℎ,𝑙) 

Output : De-noised Image 

Non-local Wavelet algorithm is used to preprocess and 

denoise using the data from dataset D. The Wavelet algorithm 

is used to split the lung images into high and low-level 

frequency components. NLW is used to decrease the noise by 

de-noising the high-frequency components. Make a low-

frequency version of the image by denoising the high-
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frequency ones. Finally, the decomposed lung image is 

produced using the NLW process. 

3.4. Segmentation Using a CNN Algorithm 

Image segmentation is the primary application of the 

segmentation model. First, train the model to split the 

individual pixels of the lung TB image. Its design draws 

inspiration from the CNN encoder-decoder. After the pooling 

layers, the encoder portion of the architecture is where the 

convolutional layers are placed. As the spatial dimensions of 

the input image decrease, layers keep the extraction of high-

level data. The decoder part of the design reverses the process 

by making the encoder’s feature maps more detailed.  

This results in a new map with the exact same spatial 

dimensions as the original image. As demonstrated in 

Equation (7), convolutional layers use the filter convolution to 

detect certain patterns and qualities, which are further 

investigated throughout the segmentation process.  

C= ∑ 𝐼 × 𝑓 × 𝑏𝑁
𝑖=1  (7) 

C represents the convolutional layer, I is the input image, 

𝑓 is the filter, and b is the bias in this context. As shown in 

Equation (8), activation functions such as ReLU are used to 

implement the non-linear modifications which help the 

network in discovering the interior linkages within the data.  

Following that, the feature maps indicated in Equation (9) 

minimizes the spatial dimensions and are processed by max-

pooling layers. These layers choose the highest value inside 

each pooling zone. (Pooling Region (𝑥)) = y 

ReLU (𝑥) = max (0, 𝑥) (8) 

MaxPooling (𝑥) = max (y) (9) 

This successfully merges the learnt features and also 

strengthens the model’s ability to tolerate the regional 

differences in input data. The method’s total effectiveness for 

segmentation and classification is improved by the multi-stage 

method, which speeds up the process of getting the strong 

features.  

The decoder restores the original spatial dimensions of 

the input image by reversing the downsampling operation 

performed by the encoder during the upsampling and 

Segmentation Mask Generation stage. Two common methods 

for this are interpolation and transposed convolutions. The last 

decoder layer generates the pixel-wise predictions or the 

probability of which each pixel is allocated to a certain group 

or category using sigmoid activation. This approach uses the 

segmentation masks to recognize the regions of interest in the 

input image easier to perform tasks like object identification 

and medical image analysis (shown in figure 3). 

 
Fig. 3 Segmentation using CNN 

Algorithm 2: Segmentation using CNN 

Input : De-noised image 

Procedure Steps: 

Step 1 : Data preparation 

Step 2 : Data Augmentation 

Apply scaling to increase the diversity of the training 

dataset 

Step 3 : Splitting the dataset 

Divide the dataset into training, validation, and test sets. 

Step 4 : Model selection and Implementation 
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Choose a CNN architecture and implement the selected 

CNN architecture using a DL framework. 

 Step 5 : Training and evaluation 

Fit the model on the training dataset. After training, assess 

the model’s performance using the test dataset. 

Step 6 : Segmentation and post-processing 

Predict segmentation masks and apply thresholding to 

refine the segmentation results. 

Step 7 : Visualization and Fine-tuning 

This helps in evaluating the performance and improves 

the model performance using hyperparameters. 

Output : Segmented Image 

 

Data preparation enables to verify whether the image is 

de-noised and resized. Dividing the data into sets for training 

and verification is a good process. The CNN model is selected 

for the use of data processing. Segmented lung images are 

improved during the training and testing. Finally, the 

hyperparameters are twisted to prevent the underfitting and 

overfitting of the model. 

3.5. Feature selection using Adversarial Feature Selection 

Lung TB uses adversarial feature selection to improve the 

selection of the most important characteristics for final 

classification. Adversarial Feature Selection (AFS) selects the 

most discriminative features following the feature extraction 

from segmented regions and therefore reduces the feature set 

size and avoids overfitting. AFS creates a reduced feature set 

with high discriminative power that is deal for the final task. 

The needs are described using m < d features from a feature 

space with d dimensions. 

𝜃 = 𝑎𝑢𝑔 max(𝐺(𝜃) + λ𝑆(𝜃)) (10) 

∑ 𝜃𝑘 = 𝑚𝑑
𝑘=1  (11) 

When weighed by a trade-off parameter λ (to be adjusted 

based on application-specific limits), G and S offer an 

approximation of the classifier’s generalizing capabilities in 

equation (10). The binary-valued vector ∈ {0, 1} d specifies 

whether each feature has been picked (1 or 0), with θ being the 

best response (in equation 11). To find the optimal feature 

subset within the maximum feature set size m, consider the 

inequality constraint 

 ∑ 𝜃𝑘 <= 𝑚𝑑
𝑘=1  

Multiple performance metrics are used to evaluate a 

classifier’s generalization ability (G (θ)) on a certain feature 

subset (θ). This is formalized if the data follows a distribution 

p(X, Y),  𝑥 and 𝑦 described in corresponding sets x and y, and 

an appropriate utility function 𝑢 = 𝑦 − ℝ → ℝ is given in 

Equation (12). 

G (𝜃) = 𝔼𝑥,𝑦~𝑝(𝑋,𝑌)𝑢(𝑦, 𝑔(𝑋𝜃) (12) 

The expectation operator is𝔼, the projection of x into the 

specified features is x (θ), and the classifier’s discriminant 

function is g(x). G (θ) corresponds to the classification 

accuracy if u(y, g(x)) = +1 and y, g(x) ≥ 0 and otherwise 0. G 

(θ) m is estimated using the available samples from p(X, Y). 

Similar to the traditional feature selection, the distribution of 

the data is unknown. Figure 4 shows the Adversarial Feature 

Selection, which filters the noisy or irrelevant data and helps 

uncover key features and avoids overfitting, resulting in an 

efficient and accurate model.

 

 
Fig. 4 Adversarial feature selection model 

 

Algorithm 3: Adversarial feature Selection 

Input : Segmented Image  

Procedure steps: 

Step 1 : Preprocessing 

Clean, normalize, and split the dataset. 

Step 2 : Feature Selector 

Create a feature selector with a classifier (F), input data 

(I) and selected subset (R) 

R=F (I)  

Step 3 : Generate Shuffled Dataset 

Shuffling dataset with I features (𝐼𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑) 

        𝐼𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑 = 𝑆ℎ𝑢𝑓𝑓𝑙𝑒𝑑(𝐼) 

Used for identifying whether the feature is suitable or not. 

Step 4 : Training 
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The model is trained to distinguish between the original 

dataset I and the adversarial dataset 𝐼𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑  

Step 5 :  Feature Selection 

Use the feature selection model to identify the most 

important dataset items. The feature selector’s loss is 

proportional to its performance with the goal of maximizing 

the adversary’s loss (loss (adv)).  

𝑙𝑜𝑠𝑠(𝑎𝑑𝑣) = −
1

𝑛
∑[𝑦𝑖 log(A(Ii)) + (1 − yi)log (1

𝑛

𝑖=1

− A( 𝐼𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑,𝑖))] 

 

A(Ii) is the adversary’s original dataset, A (𝐼𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑,𝑖) is 

the adversary’s shuffled dataset. 𝑙𝑎𝑏𝑒𝑙 𝑦𝑖 = 1  for original 

dataset and 0 for shuffled dataset. 

The feature selector’s loss is aligned with the adversary’s 

performance, which aims to maximize the adversary’s loss. 

𝑙𝑜𝑠𝑠(𝑠𝑒𝑙𝑒𝑐𝑡) = −𝑙𝑜𝑠𝑠(𝑎𝑑𝑣) 

Step 6 : Iterate 

Repeat the process iteratively, refining the selected 

features. 

Step 7 : Final Feature Selection 

These are the most important criteria for categorization; 

the feature selector provides the final selection of features.  

 Step 8 : Final Model training 

Use the selected features from F to train a final classifier. 

The final model is trained to predict the labels Y using the 

selected features select (final). 

𝑙𝑜𝑠𝑠(𝑓𝑖𝑛𝑎𝑙) = −
1

𝑛
∑[𝑦𝑖 log(𝑦̂𝑖) + (1 − yi)log (1 − (

𝑛

𝑖=1

𝑦̂𝑖)] 

𝑦̂𝑖 is the predicted label 

Output : Final Image for classification 

 

The approach begins by cleaning and normalizing the 

segmented images before dividing them into training and 

testing sets. The most relevant qualities are extracted from the 

input data using the feature selection model. The shuffled 

dataset is built by a random mix of features, which allows the 

comparison of the original data and determining the relevant 

data. 

The feature selection model focused to find the best 

features and then train the model to make discrimination 

between the original and shuffled datasets. Minimizing its loss 

based on the capacity to defeat, the opponent model educates 

the feature selector. Multiple repeats of this technique help to 

alter the features; finally, the most important ones are picked. 

The final classifier model is trained with these specific 

qualities and delivers the predictions based on the detected 

primary features in the original segmented image data. This 

final model is t used for the classification tasks. 

3.6. Classification using CNN with Modified Dense 

Architecture with improved Adam Optimization 

A CNN is a network design that allows direct learning 

from data. CNN discovers the lung TB and classifies the final 

image using the adversarial feature selection. According to A. 

Iqbal, et al (2023). CNNs are particularly useful in identifying 

the objects, classes and categories by detecting the changes in 

image patterns. CNN are composed of several trained layers. 

Hyperparameter allows changing the joint and convolution 

layers. CNN systems detect the high meaningful visual 

patterns with less raw pixel preprocessing. ImageNet has been 

a testing ground for deep image recognition algorithms, 

allowing them to grow. The custom CNN model is changed. 

According to G. Tummalapalli, et al (2024), Dense-net 

connects the current layer to all the previous levels, among the 

numerous advantages of the structure. Over the existing ones, 

there are fewer parameters with better feature propagation and 

reduced vanishing gradient issues and feature reuse 

promotion. A modified Dense-Net is a series of Dense-Nets 

(known as dense blocks) connected together by the additional 

convolution and pooling operations between each dense 

block. To identify lung TB, a CNN classifier is trained on 

chest X-ray images.  

𝑟𝑘 = ([𝑟0, 𝑟1, … … 𝑟𝑘−1]) (13) 

Where [𝑟0, 𝑟1, … … 𝑟𝑘−1] refers to the connection of layer 

0 through 𝑘 −1 feature maps in equation (13). Although the 

new feature maps are used by the successive layer, the feature 

maps from earlier levels are used as input by all the layers. 

Dense-Net gives the following values for layer l and the layer 

stack above depth dimension H in equation (14): 

𝑟[𝑘] =  𝑓(𝑤∗𝐻(𝑟[𝑘 − 1], 𝑟[𝑘 − 2], 𝑟[𝑘 − 3], … … 𝑟[1]))
 (14) 

At the execution level, all of H’s inputs join to create an 

optimum tensor. In the Dense-Net architecture, feature-map 

size X is changed via convolution and pooling.  

Improved Adam optimizes the objective functions via 

adaptive prediction for the ower-order moment-based first-

order gradient-based optimization. Ideal for situations with a 

lot of data or parameters, the technique is simple and efficient 

for computing the lung TB. This uses minimal memory and is 

not impacted by the diagonal gradient rescaling. This method 

works well for the issues with noise and sparse gradients, 

along with the non-stationary targets. In most cases, the 

hyperparameters have clear meaning and need little 

modification. Combining CNN with modified dense and 

Improved Adam extracts feature propagation allows the 

speedy and efficient model training for lung TB detection. 



D. Saranya & S. Saraswathi / IJETT, 73(5), 70-91, 2025 

  

79 

 
Fig. 5 Classification using CNN with modified dense and improved adam optimizer 

Figure 5 illustrates the classification process of feature 

selected lung image. It initially handles several layers of 

convolution and pooling. Following the feature extraction, the 

network begins with a modified Dense-Net block. Each layer 

in Dense-Net is linked to every other layer to confirm the 

feature reuse and enhanced information flow. Flattened and 

then transmitted through the fully connected layers in order to 

determine the categorization end. The model uses Adam 

optimization to regulate the weights during the training. This 

method optimizes the network’s convergence and learning by 

adjusting the learning rate for each parameter. Finally, it 

displays the lung TB result image. 

Algorithm 4: CNN with Modified Dense and Adam 

optimizer 

Input : Image  

Step 1 : Data preprocessing 

Splitting the data into training, testing, and validation 

Step 2 : Convolutional process 

Low-level properties, like as edges, textures, and shapes, 

are extracted using a series of convolutional layers. 

Step 3 : Modified Dense-net for feature distribution 

Introduce Dense-Net blocks after the CNN layers. Every 

layer in a thick block inherits feature maps from all of its 

predecessors. This ensures feature reuse and efficient gradient 

flow. Then reduce the feature map using pooling methods. 

Step 4 : Classification 

Apply flattening, which reduces overfitting and improves 

generalization. 

Step 5 : Loss Function 

Calculate the error between the actual labels and the 

estimated class probabilities. 

Step 6 : Adam Optimization 

Update model weights during training and improve the 

performance. 

Step 7 : Training 

Adjusting the learning rate as needed and monitoring the 

validation loss. 

Step 8 : Testing 

Monitor the model’s performance on the validation set 

during training to avoid overfitting. 

Step 9 : Hyper-parameter Tuning 

Find a balance between training speed and convergence. 

Output : Final predicted image 

 

CNN with modified dense and improved Adam optimizer 

performs very well while connected together.  

First, these algorithms perform the data preprocessing 

with the selected feature image. Then, convolutional layers 

extract the low-level and modified features.  

The layers reduce the overfit using flattening, and then an 

error is predicted. Improved Adam optimization performs the 

training and testing, monitors the performance, and the 

hyperparameter produces the best output of Lung TB data. 
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3.7. Training and Potential Biases 

 The proposed lung TB detection framework used 

supervised learning to train on labeled CXR images collected 

from the Montgomery and Shenzhen datasets. All images 

were re-sized to 224×224 pixels and normalized to a [0, 1] 

scale. The training is organized over 50 epochs with a batch 

size of 16 and a learning rate initialized at 0.0001. Improved 

Adam optimizer is used to dynamically update learning rates 

and momentum, and it will preserve greater convergence. 

Binary cross-entropy is used for the loss function as the 

classification problem is being classed into only two classes 

(TB vs Normal). All code is written in Python, and with 

TensorFlow 2.9, the model is trained using an NVIDIA RTX 

3090 GPU. To reduce overfitting and improve generalisation, 

applying real-time data augmentation Image Data Generator 

applied random rotations (±15°), flipped, zoomed, shifted and 

brightness. Model checkpointing is saved based on the highest 

validation accuracy, as well as previously stopping with a 

patience of 10 epochs. 

 The dataset is split into 70% train, 15% validation, 

and 15% test data using stratified sampling to maintain class 

representation. To further improve robustness, the study 

conducted 5-fold cross-validation and took the mean 

performance measures across the five folds. However, there 

may be a limitation related to dataset bias. Montgomery and 

Shenzhen did not include some of the available variations in 

either demographic or clinical data (e.g., Age, Ethnicity, Co-

morbidities). Additionally, the binary classification model of 

the TB and normal classes assumes the two classes are 

mutually exclusive, which could be inaccurate in cases where 

co-occurring pneumonia or other conditions result in a 

positive TB test. Randomization and augmentation in training 

reduced some risk of dataset bias, but validating the model is 

also needed on a multi-institutional cohort from a 

heterogeneous background to assess for bias, fairness, and 

generalizability. No leakage of information occurred, and all 

data pre-processing performed when training the model was 

carried out, as the processing steps were attached to the 

training data only. 

4. Results and Discussion 
In this paper, Python is used to implement the 

performance of algorithms. The lung TB data’s are collected 

from the Montgomery and Shenzhen datasets. Results show 

the combination of the proposed method is effectively and 

NLW de-noising, CNN-based segmentation, Adversarial 

Feature Selection, CNN with Modified Dense Architecture 

and improved Adam optimizer for highly accurate lung TB 

classification. The results reveal the improvements in 

segmentation, feature selection and classification accuracy, 

achieving the performance in the detection of TB from X-ray 

images. This method is systematically efficient and well-

suited for the large-scale medical image analysis task. The 

result of the proposed methods in this paper is increased 

compared to the existing methods. 

4.1. Peak Signal Noise Ratio  

PSNR is a metric that compares the ratio of various visual 

patterns. Its basis is MSE.  

PSNR = 10 𝑙𝑜𝑔10 {
(2𝑛−1)2

𝑀𝑆𝐸
} (15) 

MSE=∑√∈2with treated as error values. 

4.2. Structural Similarity Index Measure 

SSIM predict the perceived quality of digital television, 

movies and other sorts of digital images and videos. The 

parallelism of two images is calculated using SSIM.  

S*(x, y) = ⁠
𝜎𝑥𝑦

𝜎𝑥𝜎𝑦
 when 𝜎𝑥𝜎𝑦 ≠ 0, 1 (16) 

When one of the standard deviations (𝜎𝑥 , 𝜎𝑦) or both the 

standard deviations (𝜎𝑥  𝑎𝑛𝑑 𝜎𝑦)  are zero, the similarity is 

also zero. 

4.3. Root Mean Square Deviation  

It explains the Euclidean distance and the extent to which 

the forecasts deviate from the observed values. For every data 

point, get the residual (the gap between the forecast and the 

actual result), and then for every data point, determine the 

norm of the residuals. Finally, the square root of the mean is 

found. 

RMSD= √
∑ (𝑚𝑘−𝑚̂𝑘)2𝑡

𝑘=1

𝑡
 (17) 

In this case, k is a variable, t is the number of data points 

that are not missing, 𝑚𝑘  is the actual time series of the 

observation, and 𝑚̂𝑘 is the estimated time series. 

4.4. Accuracy  

Accuracy in predictive modeling describes how accurate 

the predictions made by the model relate to real-world events.  

In predictive modeling, how reliably and accurately a 

model produces predictions is fundamental to making good 

predictions and decisions on numerous scenarios, and 

assessing the accuracy of a model. 

T-True, F-False, P-Positive, N-Negative 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (18) 

4.5. Precision  

The ratio between the correctly predicted positive 

observations and the total expected positive observations of 

accuracy is called precision. In classification problems, the 

model’s ability to reduce FPs and display the model’s 

effectiveness is the measurement of precision. The actual 

positive prediction accuracy and reliability are important to 
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objectively find the model, which gives some certainty when 

making a decision. By doing this, both improve performance 

and decrease errors in applications. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (19) 

4.6. Recall 

 The proportion of actual positive examples that are 

identified by the model in predictive modeling is called recall. 

It is important in predictive modeling, particularly in cases 

such as medical diagnosis and fraud detection, where it is 

important to identify all the relevant actual positive cases. 

Recall is a measure that shows how well a model has detected 

all the instances of a particular class. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (20) 

4.7. F-Measure  

 The harmonic mean of precision and recall, which is 

a strong global measure of how the model performs as a 

whole, is called the F-measure. Estimators should satisfy both 

false positives and false negatives.  

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (21) 

Table 2. Comparison table of PSNR, SSIM, and RMSE values for data preprocessing  

Datasets Montgomery Shenzhen 

Algorithms/ Metrics PSNR SSIM RMSE PSNR SSIM RMSE 

Gaussian Filtering [46] 31.34 0.85 0.72 31.30 0.84 0.69 

Bilateral filtering [47] 32.12 0.88 0.67 32.09 0.83 0.62 

Non-Local Means [48] 32.56 0.92 0.57 32.33 0.90 0.50 

Wavelet Transform [49] 33.45 0.95 0.12 33.34 0.92 0.11 

Non-Local Wavelet 34.65 0.96 0.08 34.57 0.95 0.05 

 

Table 2 presents the results for five different De-noising 

algorithms (Gaussian Filtering, Bilateral Filtering, Non-Local 

Means, Wavelet Transform and Non-Local Wavelet) across 

the two datasets (Montgomery and Shenzhen). Non-Local 

Wavelet algorithm regularly achieves the highest PSNR and 

SSIM values and the lowest RMSE, which indicates the best 

performance among the tested algorithms.  

Figure 6 shows the results of comparing several de-

noising techniques on the two datasets with respect to PSNR. 

While all the algorithms generally improve the image quality, 

the Non-Local Wavelet algorithm is effective in both datasets. 

In this chart, the x-axis shows the various denoising 

algorithms, and the y-axis shows the PSNR values. Figure 7 

shows the comparative performance of various de-noising 

algorithms in terms of SSIM across the two datasets. While all 

the algorithms generally improve the image quality, the Non-

Local Wavelet algorithm is effective in both datasets. In this 

chart, the x-axis shows the various denoising algorithms and 

the y-axis shows the SSIM values.  

Figure 8 explains the comparative performance of various 

de-noising algorithms in terms of RMSE across the two 

datasets. While all the algorithms generally improve the image 

quality, the Non-Local Wavelet algorithm has a low error rate 

across the datasets. In this chart, the x-axis shows the various 

De-noising algorithms and the y-axis shows the values of 

RMSE.  

 
Fig. 6 PSNR comparison for de-noising algorithms 
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Fig. 7 SSIM comparison for de-noising algorithms  

 
Fig. 8 RMSE comparison for de-noising algorithms  

Table 3. Comparison table for segmentation 

Datasets Montgomery Shenzhen 

Algorithms/ Metrics Accuracy Precision Recall F-Measure Accuracy Precision Recall F-Measure 

K-means Clustering [50] 0.910 0.922 0.925 0.911 0.903 0.919 0.920 0.910 

Mean-Shift clustering [51] 0.921 0.937 0.939 0.920 0.919 0.930 0.932 0.916 

Fuzzy [52] 0.933 0.940 0.941 0.925 0.930 0.936 0.936 0.920 

Hierarchical [53] 0.942 0.945 0.947 0.937 0.940 0.941 0.945 0.931 

CNN 0.950 0.948 0.954 0.942 0.947 0.945 0.950 0.940 

 

Table 3 shows the performance of K-means Clustering, 

Mean-Shift, Fuzzy, Hierarchical clustering and CNN 

algorithms is evaluated on the two datasets using the various 

metrics. The proposed CNN performs well compared to the 

other existing algorithms. Figure 9 illustrates the performance 

of five clustering techniques, including K-means, Mean-Shift, 

Fuzzy, Hierarchical, and CNN, on two datasets (Montgomery 

and Shenzhen). The x-axis represents performance metrics, 

and the y-axis shows the values of the metrics, which ranged 

from 0.87 to 0.96. The data shows CNN outperformed across 

both datasets regarding the performance metrics of their 

values being the greatest across all metrics. Mean-Shift 

clustering overall had the lowest performance across the 

metrics.
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Fig. 9 Comparison of segmentation algorithms using montgomery and shenzhen datasets 

Table 4. Comparison table for feature selection 

Datasets Montgomery Shenzhen 

Algorithms/ Metrics Accuracy Precision Recall 
F-

Measure 
Accuracy Precision Recall 

F-

Measure 

Chi-Square Test [54] 0.774 0.786 0.734 0.723 0.770 0.750 0.710 0.711 

Sequential Feature  

Selection [55] 
0.840 0.845 0.845 0.842 0.830 0.830 0.812 0.810 

Particle Swarm 

Optimization [56] 
0.901 0.910 0.901 0.890 0.895 0.893 0.880 0.840 

Adversarial 0.919 0.923 0.917 0.918 0.900 0.910 0.901 0.890 

 

Table 4 shows the performance of the Chi-Square Test, 

Sequential Feature Selection, Particle Swarm Optimization 

and Adversarial algorithms is evaluated on the two datasets 

using several metrics. The proposed Adversarial Feature 

selection increases the performance compared to the other 

existing algorithms. 

 
Fig. 10 Comparison of feature selection using montgomery and shenzhen datasets 

Figure 10 demonstrates the performance of the four 

feature selection methods (Chi-Square Test, Sequential 

Feature Selection, Particle Swarm Optimization, and 

Adversarial) on the Montgomery dataset and Shenzhen 

dataset. The x-axis shows the evaluation metrics, and the y-

axis shows the performance from 0 to 1. Overall, Adversarial 
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gives the best performance across all evaluation criteria, while 

the Chi-Square Test shows the lowest overall performance. 

Table 5 explains the performance of CNN, Dense, Adam and 

CNN with Modified Dense and Adam optimizer Algorithms 

are evaluated on the two datasets, Montgomery and Shenzhen, 

by using the F-measure, recall, precision and accuracy. The 

proposed CNN with Modified Dense and Adam optimizer 

performs well compared to the other existing algorithms. 

Table 5. Comparison table for classification  

Datasets Montgomery Shenzhen 

Algorithms/ Metrics Accuracy Precision Recall F-Measure Accuracy Precision Recall F-Measure 

CNN [57] 0.9510 0.9256 0.9734 0.9423 0.9497 0.9223 0.9720 0.9410 

Dense [58] 0.9534 0.9376 0.9834 0.9567 0.9510 0.9365 0.9810 0.9534 

Adam [59] 0.9612 0.9424 0.9924 0.9655 0.9590 0.9410 0.9910 0.9625 

CNN with Modified Dense and 

improved Adam optimizer 
0.9638 0.9538 1.0 0.9763 0.9610 0.9520 0.9956 0.9752 

 
Fig. 11 Comparison of classification algorithms using montgomery and shenzhen datasets 

Figure 11 shows the performance of four models: CNN, 

Dense, Adam, and the hybrid CNN with Modified Dense and 

an improved Adam Optimizer model, using the 2 datasets. The 

x-axis includes the performance metrics (Accuracy, Precision, 

Recall, F-measure), while the y-axis contains the performance 

metrics’ values, using a higher scale of values from 0.88 to 

1.02. In all performance metrics’ values, the hybrid model had 

higher performance than the others and demonstrated that it is 

the most effective. 

4.8. Comparative Analysis with Existing Models 
Over the years, numerous DL models have been proposed 

to detect TB using CXR images. ResNet-50 applies deep 

residual connections to make training very deep networks 

easier. Deep residual networks have already shown great 

performance on medical image classification tasks. MobileNet 

was developed for mobile and embedded vision applications 

and is less computationally heavy, but may sacrifice 

classification depth. The DenseNet-121 architecture connects 

every layer to every other layer in a feed-forward fashion in 

order to improve feature reuse during a run of the network. 

More specifically, transformer-based architectures, such as 

Vision Transformers (ViT), have been used for image 

classification with great success on large datasets. Although 

these models have been successful for image classification, 

they either do not have dedicated pre-processing, or adaptive 

feature selection layers that are very helpful for noisy, low-

resolution medical image classification.  

Table 6 showcases the distinctiveness and advantage of 

the proposed framework, and the work is compared to some 

top-tier models having ResNet-50, MobileNet with AEO, 

DenseNet-121, followed by ViT-related approaches. These 

results emphasise that the overall model labels outperform the 

baselines across different metrics and the importance of recall 

and F1-score for medical conditions.  

The capabilities for performance and generalization stem 

largely from the three methods of Non-Local Wavelet de-

noising, moderate size of Adversarial Feature Selection, and 

the Modified DenseNet architecture, where Adam 

optimization is utilized. Unfortunately, typical methods utilize 

the relative deep layers/hand crafting methods along with a 

very simple noise-tolerant basis. 
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Table 6. Comparison table of existing and proposed methods 

Model / Method Dataset Accuracy Precision Recall F1-Score 

ResNet-50 Shenzhen 0.938 0.921 0.944 0.932 

MobileNet + AEO Shenzhen 0.940 0.935 0.942 0.938 

DenseNet-121 Montgomery 0.950 0.940 0.960 0.950 

ViT + AdamW Montgomery 0.955 0.942 0.949 0.945 

Proposed (CNN + NLW + AFS + DenseNet) Montgomery 0.9638 0.9538 1.000 0.9763 

Proposed (CNN + NLW + AFS + DenseNet) Shenzhen 0.9610 0.9520 0.9956 0.9752 

 

 
Fig. 12 Existing and proposed methods comparison chart 

Figure 12 portrays a performance comparison of various 

models -- ResNet-50, Mobile Net dependent AEO, DenseNet-

121, ViT dependent AdamW and the Proposed Hybrid model 

(CNN + NLW + AFS + DenseNet), respectively, for the 

Montgomery and Shenzhen datasets. The x-axis has models 

and dataset details, while the y-axis represents performance 

metrics (F1-score, Recall, Precision, and Accuracy). The 

performance starts from 0.88 to 1.02. The proposed model 

outperforms compared to other models in all performance 

metrics. 

4.9. Experimental Setup and Implementation 

In an effort to ensure both reproducibility and 

transparency, the proposed lung TB detection framework and 

experimental procedures are provided below. The experiments 

are conducted on a high-performance workstation equipped 

with NVIDIA RTX 3090 (24 GB VRAM), 64 GB RAM and 

Intel Core i9. The software environment included Python 3.9, 

TensorFlow 2.9, and all the libraries necessary for this work, 

which include NumPy, OpenCV, and Scikit-learn. 

4.10. Training Configuration 

The intended model is trained by supervised learning with 

the labeled CXR datasets (Montgomery and Shenzhen). The 

input images are downscaled to 224×224 pixels in size, and 

pixel values are normalized between [0, 1]. The model was 

trained for 50 epochs with a batch size of 16 samples and an 

initial learning rate of 0.0001. The model is optimized with an 

Improved Adam optimizer, which has dynamic learning rate 

variations and bias corrections to converge faster. Training 

and validation were executed with an NVIDIA RTX 3090 

GPU, and during the training process, model checkpoints were 

based on the information of the best validation accuracy. 

4.11. Data Augmentation 

In order to limit overfitting and improve model 

generalization, data augmentation was used in real-time while 

training the model, using the ImageDataGenerator class of 

Keras. The data augmentation pipeline included random 

horizontal and vertical flips, rotations of ±15 degrees, zoom in 

the range of 0.9 to 1.1, width and height shifts of up to 10 % 

and brightness transformation. The transformations were 

designed to capture the most commonly seen image 

distortions and clinical variability - variability that would be 

seen in the chest X-ray acquisition - so that the model could 

learn features that were most robust and invariant. 

4.12. Validation Strategy 

The dataset used in this research is resampled into a 

training set (70%), a validation set (15%), and a test set (15%), 

maintaining approximate class balance using stratified 

sampling. To further ensure reliability, each separate run of 

the training process was repeated 10 times. The means of the 

performance metrics were then reported. The combined 
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dataset was also subjected to 5-fold cross-validation to further 

assess generalizability. There was no data leakage, and all 

preprocessing was performed on the training set only to avoid 

target bias. 

4.13. Ablation Study 

This study demonstrates the individual impact of each 

component (NLW, AFS, DenseNet, Adam) on performance. 
Table 7 shows a continual improvement in performance with 

the addition of each component. Beginning with the baseline 

CNN, first added NLW and AFS, the feature representation 

becomes more robust, and noise is reduced.  

The addition of Dense Net also improves the learning of 

deep features by using dense connectivity. Ultimately, the 

proposed model has the best performance with no false 

negative (perfect recall) and the highest F1-score, implying a 

strong and accurate learned classification across all classes, 

including minority or hard-to-detect cases. In Table 8, CNN is 

just a starting point, producing reasonable results because 

convolutional layers are capable of learning spatial patterns 

from X-ray images.  

Table 7. Ablation results on montgomery dataset 

Configuration Accuracy Precision Recall F1-score 

CNN only 0.951 0.926 0.973 0.942 

+ NLW 0.956 0.934 0.979 0.955 

+ NLW + AFS 0.960 0.945 0.985 0.962 

+ NLW + AFS + 

DenseNet 
0.962 0.951 0.993 0.973 

+ All (Proposed) 0.9638 0.9538 1.000 0.9763 

Table 8. Ablation results on shenzhen dataset 

Configuration Accuracy Precision Recall 
F1- 

Score 

CNN only 0.9497 0.9223 0.9720 0.9410 

+ NLW (CNN + 

NLW) 
0.9548 0.9305 0.9801 0.9546 

+ NLW + AFS 0.9587 0.9412 0.9890 0.9644 

+ NLW + AFS + 

Modified DenseNet 
0.9602 0.9486 0.9932 0.9703 

+ All (Proposed) 0.9610 0.9520 0.9956 0.9752 

Non-Local Wavelet de-noising can help improve 

precision and F1-score by reducing the distortion of structural 

details necessary in the input images, thereby reducing 

distractive noise while also retaining important TB-related 

features. Also, the Adversarial Feature Selection (AFS) 

selection reduces irrelevant or redundant features, which 

improves generalization (recall_data + accuracy), because the 

classifier is only looking at discriminative patterns. A 

Modified DenseNet is better able to propagate features 

through the block of layers and to improve total weight 

gradient flow, giving better robustness for differentiation, 

especially given TB signs which are likely subtle in the 

previous images. Improved Adam, with bias correction and 

adaptive rates for weights, is a better optimizer than anything 

else here; it will improve convergence and overall accuracy. 

4.14. Statistical Analysis 

Make sure the strength and statistical viability of the 

improvements in performance of the proposed model, at least 

two-tailed paired t-tests are conducted to compare the 

performance of the proposed model against the baseline 

models, including the standard CNN, ResNet-50, and 

DenseNet-121 over 10 independent runs. The comparisons 

with the baseline models were made for the performance 

metrics that were considered most important for clinical 

usability, including F1-score, recall, precision, and accuracy 

when evaluated on two datasets, Montgomery and Shenzhen. 

The calculations illustrate that CNN + NLW + AFS + 

Modified DenseNet model statistically significantly 

outperformed the three baseline models for mean accuracy and 

recall (p < 0.005 in all cases). Therefore, we are able to reject 

the null hypothesis and conclude that the improvements to 

performance are not purely due to chance.  

For example, as evaluated on the Shenzhen dataset, the 

average recall for the proposed model was 0.9956, while the 

average for the standard CNN is 0.9720 (p = 0.002), and that 

for DenseNet-121 is 0.960 (p = 0.004). Additionally, Cohen’s 

d effect size is calculated as a measure of the practical 

significance of the improvements to performance with the 

proposed model. A Cohen’s d value >0.8 suggests a large 

effect size, and therefore is practically significant. Altogether, 

these results establish that the proposed framework not only 

provides statistically significant improvements over well-

accepted methods for clinical use, but also affords practically 

worthwhile improvements important in the context of clinical 

diagnosis, where stakes can be high. 

4.15. Add ROC & PR Curve Analysis 

Include ROC and Precision-Recall curves with AUC 

scores for both datasets. Table 9 details the comparisons of 

ROC and PR AUC scores of both the standard CNN and the 

proposed upgraded model on Montgomery and Shenzhen. The 

proposed model (CNN + NLW + AFS + Dense + Adam) 

provides consistently higher performance than the basic CNN, 

and thus has higher AUC values as well: 0.981 (ROC) and 

0.979 (PR) for Montgomery and 0.979 (ROC) and 0.976 (PR) 

for Shenzhen. The difference in AUC values demonstrates 

improved classification performance with respect to class 

imbalance. In Figure 13, the ROC (the curve assesses the 

performance of a classifier. The x-axis is the False Positive 

Rate (FPR) and the y-axis is the True Positive Rate (TPR). The 

diagonal dashed line indicates random guessing; the AUC  is 

0.512, which is only slightly above 0.5, meaning the model 

has slightly better performance than random classification. 

Figure 14 illustrates the PR curve to evaluate the performance 

of the classification problem, particularly with imbalanced 

datasets. The x-axis displays recall and the y-axis displays 

precision (positive prediction accuracy). The AUC is 0.541, 
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which is considered low to moderate, showing the model has 

some ability to accurately find positive instances, albeit with 

a low recall value, limiting the model’s prediction ability. 

Table 9. AUC scores comparison table 

Model Dataset 
AUC 

(ROC) 

AUC 

(PR) 

CNN Montgomery 0.960 0.958 

CNN + NLW + 

AFS + Dense + 

Adam 

Montgomery 0.981 0.979 

CNN Shenzhen 0.957 0.954 

Proposed Shenzhen 0.979 0.976 

 

 
Fig. 13 ROC curve  

 
Fig. 14 Precision-recall curve 

4.16. Real-World Applicability 

The proposed framework has great potential in actual 

clinical settings, especially in a resource-constrained setting. 

It has demonstrated the ability to process standard CXR 

images with a completely automated pipeline and facilitate 

rapid and inexpensive TB screenings without requiring an 

expert radiologist. The modular approach allows the model to 

be adapted to mobile diagnostic units and community health 

programs. The system provided high recall, which can help 

minimize the number of false negatives, which is critical for 

TB control. Additionally, the use of public datasets and open-

source frameworks facilitates very low integration barriers 

with an existing healthcare infrastructure, supporting large-

scale screening campaigns and helping to support early 

intervention strategies. 

4.17. Strengths 

The proposed lung TB detection framework has several 

strong points that improve its diagnostic capabilities and 

feasibility in the real world. Chemical recall is very high (up 

to 1.000 on Montgomery, 0.9956 on Shenzhen), achieving a 

recall at nearly 100%. This means that very capable of 

identifying all true TB positives, which is a primary need in 

clinical screening applications. The Adversarial Feature 

Selection used in the literature has value because it supports 

learning of robustly discriminative feature representation by 

allowing only clinically useful signals to be learned, by 

removing redundant information and selection of useful 

representations. This improves generalization, limits 

overfitting, and improves the global acceptance. Non-Local 

Wavelet de-noising improves input data collecting and 

provides more information with fewer features because it 

removes noise but preserves structure. This is important for 

making appropriate analyses on chest X-rays and other 

indications of how the solution is less sensitive to noise, which 

otherwise could create larger variation in the answer. The 

modified DenseNet architecture also provides useful results 

here in the sense of ensuring effective propagation of features 

and gradient flow between layers. The improved Adam 

optimizer allows for changes in learning rates more 

effectively, which leads to faster convergence and also helps 

stabilize the training. With the high recall walking backwards 

with the noise-tolerant, robust, sensitive solution, it has shown 

cross-dataset performance, and both are good options to 

rethink the feasibility of TB screening in the real world. 

4.18. Limitations 

While the development framework shows robust results, 

there are a few limitations. The study depended on only 2 total 

public datasets (Montgomery and Shenzhen) and therefore 

might not represent all real-world diversity in imaging 

conditions, demographics, and disease variants. In addition, 

the model in this study was limited to binary classification (TB 

versus Normal) and does not distinguish other pulmonary 

diseases that have overlapping characteristics. Even though 

the DL architecture demonstrated substantial accuracy, it 

requires significant computation and will need to be optimized 

or reduced in the number of calculations needed for low-

power devices or real-time applications. In addition, as the 

model has not been externally validated nor has it undergone 

clinical trials, there is limited potential for its use in clinical 

practice at this time. 
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4.19. Future Work 

Future work will be carried out with a number of 

improvements to the detailed framework. First, it will be 

validated on different datasets like TBX11K and ChestX-

ray14 to advance generalizability. Eventually, the framework 

will also be developed into a multi-class classification capable 

of distinguishing TB from pneumonia and lung cancer, and 

other thoracic diseases. Also, a study on model compression 

libraries and lightweight architectures will be researched for 

on-device and real-time and mobile deployments. 

Subsequently, the introduction of clinical metadata consisting 

of symptoms and/or patient history will also be pursued to 

continue making the models increasingly robust. Ultimately, 

the research and collaborate with healthcare providers for 

clinical trials in low-resource environments will successfully 

deploy the models. 

5. Discussions 
The framework achieves more effective detection of TB 

in images utilizing several components. First, the NLW 

algorithm needs to reduce the noise while preserving relevant 

image details to improve the learning of the features. 

Implemented Adversarial Feature Selection (AFS) to 

guarantee the model learns robust and discriminative features 

to improve the discrimination of the models, related to 

generalizing the models. The use of CNN-based segmentation 

will filter out unnecessary regions by focusing the models on 

the only relevant regions of the lung image and reducing the 

noise. The Modified Dense Architecture and improvement in 

the Adam Optimizer converged faster and improved the model 

to not overfit. The results compared to the previous methods 

showed higher accuracy, precision, and recall when applied to 

two different datasets, Montgomery and Shenzhen. Overall, 

all of the component improvements produced a more accurate, 

robust, and efficient model to detect TB. 

6. Conclusion 
This research presents a thorough, hybrid DL framework 

for the automated identification of pulmonary TB from CXR 

images. The proposed method, by integrating NLW denoising, 

CNN-based segmentation, Adversarial Feature Selection, and 

a Modified DenseNet classifier supported with improved 

Adam optimization, can provide substantial gains in 

classification accuracy, sensitivity, and robustness. Detailed 

evaluation of the method on the Montgomery and Shenzhen 

datasets, along with ablation studies and statistical 

evaluations, provides the individual contributions of each 

module and evidence that the method’s proposed performance 

gains are statistically significant. Not only does this model 

improve results over existing methods, but it does so with an 

important advantage in recall, thereby minimizing false 

negatives in TB diagnosis texts. Additionally, while there are 

limitations to this artwork - lack of external validation and the 

enormous computational demands - the framework has 

demonstrated strong potential for use in real-world 

environments for TB screening programs. Next steps for this 

project will be to consider/deliver multi-disease classification, 

deployment for mobile operation, and conducting prospective 

clinical validation trials in a variety of clinical practice 

settings. 
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