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Abstract - This research addresses the challenges posed by the high environmental variability in waste disposal sites and the 

inherent inaccuracies in manual waste classification by introducing HuYOLO-NAS, an adaptive neural network model designed 

to enhance the precision of real-time classification of recyclable solid waste. The system integrates the YOLO-NAS architecture 

with the Hu moments algorithm to optimize object detection and spatial localization. The model was trained on the 'EcoSight' 

dataset, comprising 8,400 annotated images of paper, cardboard, PET plastic and hard plastic. Performance was quantitatively 

assessed using metrics such as precision, recall, F1 score, accuracy, and mean Average Precision (mAP), supplemented by 

confusion matrix analysis. The results underscore HuYOLO-NAS’s potential as an advanced solution for automated waste 

sorting, reducing the manual labor involved and mitigating sanitation risks, thus providing a robust foundation for future 

advancements in machine vision for waste management. 
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1. Introduction 
The implementation of the Comprehensive Solid Waste 

Management Law, enacted by the Ministry of Environment in 

2016, has been hampered by the incompetence of regional and 

municipal governments in Peru [1]. This law aims to manage 

and reuse recyclable materials in accordance with 

environmental and economic principles. However, the lack of 

adequate infrastructure, poor inter-institutional coordination 

and the absence of an environmental awareness plan have 

resulted in ineffective management of solid waste in the 

country [2]. In Peru, the recycling rate is 1.9% [3], much lower 

than the regional average of 4.6% in Latin America and the 

Caribbean; for example, Colombia has a recycling rate of 

10.6% [4]. This low rate generates an excessive accumulation 

of waste in landfills and public spaces [5], which exposes 

personnel in charge of manual solid waste separation to health 

risks and hinders the recovery of recyclable material [7]. It 

also contributes approximately 5% to greenhouse gas 

emissions [6]. It is therefore necessary to address solid waste 

management to improve public health and reduce its 

environmental impact. In the districts of the provinces of Lima 

and Callao, in 2020, less than 1% of the total municipal solid 

waste generated will be recovered. This value is well below 

the average of developed countries, where approximately 35% 

of water is recycled or composted. This low recovery rate 

reflects deficiencies in the “implementation of an integrated 

municipal solid waste management system” [8]. Different 

investigations have addressed the effective management of 

solid waste; for example, a smart garbage collection model 

was implemented in Norway that uses trucks to collect bags 

of different colors, corresponding to different types of waste, 

which are then processed in an optical sorting plant. This 

system, implemented in 2012, has a precision of 98% and 

managed to increase the recycling rate by 37% by 2018 [9]. 

Additionally, in Australia, machines with artificial vision have 

been implemented to process up to 160 recyclables per minute, 

compared to the average of 35 recyclables per minute 

achieved by human labor [10]. In another case study from 

India, a computer vision system based on convolutional neural 

networks was developed to classify electronic waste, 

classifying waste into eight categories with an accuracy of 

96%. It is projected that the execution of this project could 

reduce costs by up to 20% by 2026 if manual sorting is 

replaced [11]. In this way, the artificial vision has proven its 

usefulness by increasing the recycling rate [8], reducing 

human labor [10], and decreasing the costs of sorting 

recyclable solid waste [11].  

However, there is a general research gap in machine 

vision application in environments characterised by high 

variability, as is the case in the Peruvian environment. In such 

environments, the diversity and heterogeneity of waste in 

landfills and disposal sites represent an additional challenge 

for adopting automated sorting systems. This issue highlights 

the need to develop adaptive solutions that respond to the 

specific conditions of highly variable environments. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:u20224252@utp.edu.pe


Bruno Muchotrigo-Albertis et al. / IJETT, 73(4), 258-278, 2025 

 

259 

Consequently, the present research aims to develop and 

implement HuYOLO-NAS, an adaptive neural network model 

to integrate the YOLO-NAS architecture with the Hu 

moments algorithm to classify recyclable solid waste in real-

time. This innovative approach is adapted to the particularities 

of the Peruvian environment, offering a more accurate and 

efficient solution to optimise the separation process in 

recycling, in contrast to conventional methods. 

2. State of the Art 
2.1. Classification of Solid Waste 

Solid waste is defined as materials dumped into 

ecosystems in a semi-solid or solid state and managed through 

collection, treatment, marketing and reuse processes. They are 

also classified as plastic, paper and cardboard [12]. They are 

also categorized according to their origin and reuse potential: 

recyclables include plastics, glass, metals and textiles, while 

non-recyclables include organic matter and hazardous 

materials [13]. 

2.2. Machine Vision Approaches in Solid Waste 

Classification 

Machine vision is a discipline of Artificial Intelligence 

(AI) that emulates the functionality of the sense of sight, 

allowing the collection, processing and analysis of spatial data 

from digital images [14]. Neural networks consist of 

interconnected nodes that learn from data for recognition, 

classification and prediction tasks [15]. The main 

architectures are Recurrent Neural Networks (RNN), suitable 

for time series and natural language, and Convolutional 

Neural Networks (CNN), which process spatial features in 

images to identify visual patterns [16]. Likewise, learning 

algorithms are classified into supervised ones for labeled data, 

unsupervised ones for detecting patterns in unlabeled data and 

reinforcement learning algorithms that learn through rewards 

and penalties [17].  

Different approaches have been explored for solid waste 

classification using computer vision. On the one hand, deep 

learning-based neural networks have been used in the 

DeepSORT You Only Look Once - trash (DSYOLO-trash) 

algorithm [18] and the Garbage Classifier Deep Neural 

Network (GCDN-Net) [19]. Both are known for their high 

performance in automated capturing and extracting abstract 

features in high variability scenarios. On the other hand, the 

ShuffleNet v2 algorithm powered with Yolov5s [19] used the 

architecture of convolutional neural networks; this approach 

differs from DSYOLO-trash [18] and GCDN-Net [18] by 

being efficient on computers with limited data processing 

capacity. Similarly, the k-nearest-neighbors supervised 

learning algorithm was used; this method is versatile with 

input data and is fed back with output data, optimizing the 

object detection algorithm iteratively and autonomously [11]. 

Thus, each type of algorithm has a specific application in 

computer vision systems, which directly influences the results 

desired in the effective management of solid waste. 

2.3. Datasets 

Image databases are crucial for training accurate 

algorithms for solid waste recognition. Two datasets were 

used: “TrashNet”, with 2528 images of glass, paper, 

cardboard, plastic, metal and trash, and “MMTrash”, with 

2332 multi-labeled images of mixed waste. These datasets 

allowed for obtaining a recognition accuracy of 98.5% [18]. 

In addition, the “Garbage In, Garbage Out” dataset was used, 

with 25,000 processed and labeled images, reaching an 

accuracy of 95.77% [19].  

Additionally, a dataset of 6632 images was created using 

a web crawler and mobile captures. Applying enhancement 

techniques, such as random rotations and brightness 

adjustments with the Python imgaug library, generated a total 

of 7072 labeled frames in ten categories. Finally, the data were 

distributed in a ratio of 80:20 for the training sets and the 

validation and test sets, achieving an accuracy of 94% [20]. 

This shows that careful data selection and preprocessing can 

significantly improve the accuracy of solid waste recognition. 

2.4. Efficiency of Classification Algorithms in Variable and 

Controlled Environments 

During the transportation of solid waste on a moving 

conveyor belt, a notable difference in the performance of 

object tracking algorithms is observed depending on the type 

of environment. On the one hand, the DSYOLO-Trash model 

[18] has shown significant improvements in accuracy when 

identifying solid waste in real-time in highly variable 

environments, defined as those with operating conditions that 

change frequently and unpredictably, where stability is 

difficult to maintain, and continuous adaptation is essential 

[16]. On the other hand, the Oriented Fast and Rotated BRIEF 

(ORB) algorithm showed greater accuracy in classification in 

a first-class controlled environment characterized by constant 

illumination, homogeneous backgrounds and calibrated 

cameras. These optimized conditions allow ORB to 

outperform Speeded Up Robust Feature (SURF) and Scale 

Invariant Feature Transform (SIFT) [21]. This comparison 

shows how the effectiveness of the algorithms varies 

depending on the stability of the environment in which they 

are applied. 

2.5. Robotic Arm Control 

Robotic arms improve productivity in processes such as 

waste management by handling hazardous objects but face 

challenges in accuracy, strength, and speed. The adaptive 

control model with dual neural networks (ADNSMC) 

outperforms other methods in accuracy and robustness, 

compensating for kinematic and dynamic uncertainties with 

recurrent neural networks (RNN) and radial basis fencing 

networks (RBFNN) [20]. Furthermore, an approach to 

calculate the position and accuracy of industrial robots such as 

KUKA RSI reduced orthogonal deviations by more than 64% 

and inline errors by more than 93%, greatly improving 

accuracy in linear movements at 55 mm/s [21]. In that sense, 
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the precision of the robotic arm would be guaranteed to move 

recyclable waste to further treatment. 

2.6. Adaptive Neural Networks in Computer Vision 

Adaptive neural networks dynamically adjust their 

structures and parameters during inference in relation to the 

input data. These networks optimize resources by selectively 

activating model components on demand and support 

advanced optimization techniques such as quantization, 

pruning, and knowledge distillation. As a result, they improve 

efficiency, representation power, and adaptability to different 

computational budgets. In comparison, static models such as 

RNNs and CNNs maintain a fixed computational graph and 

parameters after training [22].  

Thus, implementing an adaptive neural network can 

update the computer vision system in real time and improve 

the performance and detection of solid waste. The purpose of 

the research is to classify recyclable solid waste using 

computer vision to optimize separation in recycling in highly 

variable environments. In this sense, the following steps have 

been proposed to fulfil the purpose. First, a dataset with four 

types of solid waste that can be recycled will be created.  

Secondly, the HuYOLO-NAS model will be trained for 

the accurate classification of solid waste. Thirdly, a robotic 

arm will be implemented to transfer the solid waste to its 

corresponding containers based on the information provided 

by the artificial vision model. Finally, the classification 

accuracy of the system will be evaluated to measure its 

efficiency. 

3. Methodology 
3.1. Creating the Dataset 

The authors of this research study created the EcoSight 

dataset, which is available in a public GitHub repository, 

HuYolo-NAS [23]. The dataset comprises 8400 RGB images 

in Joint Photographic Expert Group (JPG) format with a 

resolution of 640 x 640 pixels. Additionally, the images are 

organized into four categories, focusing on Peru's most 

recovered and valued recyclable solid waste: PET plastic, hard 

plastic, paper and cardboard [24].  

The PET plastic category included images of containers 

used for water, rehydrating drinks, liquid dishwashing liquid, 

rinse aids, disinfectants, oil and vinegar. Regarding hard 

plastic, images of yogurt containers, lids of various beverage 

containers, bleach containers, disposable white plastic cutlery, 

solid dishwashing liquid and butter containers will be 

collected. The paper category will include images of mixed 

paper, white paper, and coated paper, as well as manila 

envelopes, folders, glossy paper, and ballots. Finally, the 

Cardboard category will refer to images of cardboard pieces 

and cardboard boxes. The stages of creating the EcoSight 

dataset (Figure 1) comprised 4 stages: image collection, 

preprocessing, labelling and enlargement. 

 
Fig. 1 Stages of EcoSight dataset creation: (a) Recollection; (b) Preprocessing; (c) Labelling; (d) Augmentation

3.1.1. Image Collection 

The image collection used was of a mixed nature, 

integrating both automated sources and our own collection, 

which allowed us to guarantee consistent diversity and quality 

in the dataset. The distribution of the images is presented in 

Table 1 by the type of collection used and the type of class. 

Firstly, the automated collection was carried out through the 

Roboflow Universe platform, with 1600 images obtained and 

distributed in 250 PET plastic images, 320 hard plastic 

images, 494 paper images and 536 cardboard images. In this 

way, the Roboflow Universe platform facilitated this process 

under the AGPL-3.0 open-source license, allowing access to 

high-quality images with a focus on transparency and reuse of 

the images for research purposes. Secondly, a private 

collection was carried out in recycling centres in Metropolitan 

Lima, where 1600 images were captured and distributed in 

250 PET plastic images, 319 hard plastic images, 495 paper 

images and 536 cardboard images. This approach involved 

taking the images on a white background to ensure visual 

consistency and minimize external interferences for optimal 

data quality control.   

Table 1. Distribution of images by class and type of collection 

Class Name 
Automated 

collection 

Private 

compilation 
Total 

PET Plastic 250 250 500 

Hard Plastic 320 319 639 

Paper 494 495 989 

Cardboard 536 536 1072 

Total 1600 1600 3200 
Note: The table shows the total number of images per class, differentiated by 

automated and private collection. 
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3.1.2. Image Preprocessing 

For automated image preprocessing, a Python script with 

the PIL library was used, where the variables source_folder 

and destination_folder define the paths of the source and 

destination folders for the four recyclable solid waste 

categories. The script resizes each image to 640x640 pixels 

and creates the destination folders automatically with 

os.makedirs(destination_folder), ensuring an organized 

structure. Then, it iterates through each image in 

source_folder, processes it with img.resize, and saves it to the 

location specified in destination_folder. In this way, we follow 

the recommendations of Fitzgerald et al. [28], who 

demonstrated that adequate image resolution significantly 

improves the accuracy of models in computer vision tasks. 

This automated preprocessing process ensures that the 3200 

collected images conform to size standards before moving on 

to the labeling process, thus optimizing the preparation of the 

dataset for use. 

3.1.3. Image Labelling 

The adaptive neural network requires labeled data, so 

bounding boxes were used in the 3200 collected images. In 

this sense, the Manual Labeling technique was used, where the 

authors labeled the images with bounding boxes. Additionally, 

the annotation classes corresponding to the categories: 

“pet_plastic”, “hard_plastic”, “paper” and “cardboard” were 

configured, and the annotation tool classes were blocked to 

ensure that only these defined categories were used. In 

addition, quality control was implemented, and every 200 

labeled images were reviewed by one of the authors to detect 

and correct possible errors. 

After completing the bounding box labeling, an adequate 

balance between classes was achieved. In total, approximately 

5764 annotations were made. The annotated classes were as 

follows: cardboard with 1409 annotations, hard plastic with 

1181 annotations, paper with 1111 annotations, and PET 

plastic with 2063 annotations. The distribution of annotations 

by class is shown in Table 2. 

The technical information of the EcoSight dataset (Table 

3) shows that the average image size was 0.41 MP, spanning 

a range from 0.05 MP to 12.19 MP, and the average resolution 

was 640x640, maintaining a square aspect ratio. In addition, 

no missing annotations or null examples were found, ensuring 

data consistency for the machine vision system for recyclable 

solid waste classification. 

3.1.4. Data Expansion 

Lin et al. [29] claim that image augmentation techniques 

should be employed to improve model performance. In this 

context, the existing 3200 solid waste images dataset will be 

manipulated using specific techniques, including 90° rotations 

(clockwise, counterclockwise and reverse) and additional 

rotations between -15° and +15°. Furthermore, saturation 

levels will be adjusted between -25% and +25%, and 

brightness between -15% and +15%, in addition to applying a 

blur of up to 2.5 px. These techniques were executed in 

Roboflow and are intended to reduce overfitting while 

increasing the number of training images. Finally, 8400 

images were obtained, which were divided into 93% for 

training with 7800 images, 2% for validation with 200 images 

and 5% for testing with 400 images.

 
Fig. 2 Images from the  EcoSight dataset: (a) PET Plastic (b) Hard Plastic (c) Paper (d) Cardboard

Table 2. Distribution of annotations by class 

Class Name Automated collection 

pet_plastic 2063 

hard_plastic 1181 

paper 1111 

cardboard 1409 

Note: The table shows the distribution of annotations made for each class of 

recyclable solid waste in the labelling process. 

Table 3. Technical information of the dataset 

Characteristic Value 

Imagens 3200 

Annotations 5764 

Classes 4 

Average size per image 0.41 MP 

Image size range 0.05 MP - 12.19 MP 

Medium resolution 640x640 px 
Note: The table reflects the technical characteristics of the EcoSight dataset. 
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Fig. 3 Flow chart of detection and classification of recyclable waste with HuYOLO-NAS
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3.2. HuYOLO-NAS Model 

The HuYOLO-NAS model was developed, which 

integrates the YOLO-NAS computer vision model [30] and 

the Hu moments algorithm [31] and will be used to classify 

and calculate the real-time position of four classes of 

recyclable solid waste. The process (Figure 3) begins with 

real-time video capture, from which the individual frames are 

extracted. These frames are then resized to 640 x 640 pixels. 

The YOLO-NAS neural network is then used to predict the 

objects' classes in the extracted frames. In case no class is 

detected, the process concludes at that point and returns to the 

real-time video capture. However, if any waste class is 

detected, the predictions are stored in a list for further 

processing. Depending on the predicted class of waste 

(pet_plastic, hard_plastic, paper or cardboard) and following 

an established priority order for detection, its corresponding 

class_id and prediction_id are stored in the list. Following the 

identification of the classes, the three-dimensional position of 

the object, X, Y, and Z coordinates, is calculated from the Hu 

moments algorithm to determine its exact location in space. 

These data, both class and position, are transmitted to the 

ESP32 microcontroller, which is responsible for managing the 

movement of the robotic arm. The displacement of the arm is 

calculated using inverse kinematics algorithms to ensure 

optimal accuracy in locating the object. Upon reaching the 

predicted position, the claw of the robotic arm opens to grab 

the waste. Once the capacitive sensor confirms the detection 

of the object, the claw closes to proceed with its collection. 

Subsequently, depending on the predicted waste class (such as 

PET plastic, hard plastic, paper or cardboard), the robotic arm 

moves to the appropriate container to deposit the object. This 

classification process implies that the system stores both the 

name of the waste and its class, ensuring an accurate record of 

the processed waste. Once the object has been deposited, the 

corresponding predictions are removed from the pending task 

list. Finally, the prediction list is checked to see if it is empty. 

If it is, the process stops; otherwise, the cycle is repeated to 

continue sorting the remaining waste. In this way, the 

procedure efficiently automates the detection, sorting and 

disposal of recyclable solid waste using an artificial vision 

system combined with a robotic arm. 

3.2.1. The YOLO-NAS Model 

Recyclable solid waste classification is performed using 

You Only Look Once - Neural Architecture Search (YOLO-

NAS), which implements an advanced object detection system 

optimized through a four-phase architectural search [32]. 

First, in the "Input" phase, images are received. Then, the 

"Backbone" phase processes them through a CNN that 

extracts edges and textures. Next, the "Neck" phase refines 

these features using feature pyramids. Finally, the "Head" 

phase predicts the class of each detected recyclable solid 

waste. The performance of YOLO-NAS was optimized using 

the Neural Architecture Search technology [33], which adjusts 

the model architecture to balance accuracy and efficiency. In 

addition, the model applies quantization through the Hybrid 

Quantization method, where the accuracy is reduced in 

specific parts of the model using Quantization-Aware Blocks 

[34] and Selective Quantization [35]. In addition, INT8 

quantization is used to reduce memory usage and inference 

times, making it suitable for edge devices with limited 

hardware, such as the Tesla T4 GPU used for model training. 

Finally, its performance is enhanced by the SuperGradients 

Training Toolkit library, which provides an optimized 

environment for model training and tuning, allowing for 

greater efficiency and accuracy in detection. Therefore, 

YOLO-NAS is a robust option for real-time classification of 

four classes of recyclable solid waste [37]. 

3.2.2. The Hu Moments Algorithm 

To implement the Hu Moments algorithm, OpenCV was 

used for processing captured images in real time, converting 

them to grayscale, and binarizing them using thresholding. 

These operations are necessary to prepare the image before 

calculating the Hu Moments. NumPy was used to manipulate 

the numerical data and facilitate matrix operations and 

bounding box coordinates. In addition, supervision was used 

to manage detections and bounding boxes, allowing the 

identification of objects and their classes. 

Table 4. HuYOLO-NAS training hyperparameters 

Parameter Value 

warmup_initial_lr 1e-6 

lr_warmup_epochs 3 

initial_lr 2e-4 

cosine_final_lr_ratio 0.3 

weight_decay 0.001 

decay 0.9 

max_epochs 20 

score_threshold 0.1 

top_k_predictions 300 

num_classes 4 

nms_top_k 300 

max_predictions 100 

nms_threshold 0.7 
Note: The table shows the hyperparameters used in training. 

The Hu Moments are a set of seven descriptors calculated 

from the normalized moments of the object, which are 

invariant under geometric transformations such as rotation, 

translation and scale. These descriptors are defined by the 

following equations: 

ℎ𝑢[0] = 𝑛02 + 𝑛20 

ℎ𝑢[1] = (𝑛02 − 𝑛20)2 + 4𝑛11
2  

ℎ𝑢[1] = (𝑛02 − 𝑛20)2 + 4𝑛11
2  

ℎ𝑢[2] = (𝑛30 − 3𝑛12)2 + (3𝑛21 − 𝑛03)2 

ℎ𝑢[3] = (𝑛30 + 𝑛12)2 + (𝑛21 + 𝑛03)2 

ℎ𝑢[4] = (𝑛30 − 3𝑛12)(𝑛30 + 𝑛12)[(𝑛30 + 𝑛12)2

− 3(𝑛21 + 𝑛03)2] + (𝑛21 − 3𝑛03)(𝑛03

+ 𝑛21)[3(𝑛30 + 𝑛12)2 − (𝑛21 + 𝑛03)2] 
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ℎ𝑢[5] = (𝑛20 − 𝑛02)[(𝑛30 + 𝑛12)2 − (𝑛21 − 𝑛03)2]
+ 4𝑛11(𝑛30 + 𝑛12)(𝑛21 + 𝑛03) 

ℎ𝑢[6] = (3𝑛21 − 𝑛03)(𝑛21 + 𝑛03)[3(𝑛30 + 𝑛12)2 −
(𝑛21 + 𝑛03)2] + (𝑛30 − 3𝑛12)(𝑛21 + 𝑛03)[3(𝑛30 + 𝑛12)2 −
(𝑛21 + 𝑛03)2]  (1) 

Once the object is detected, the corresponding bounding 

box is used to crop the image's region of interest (ROI). This 

process involves extracting the coordinates of the bounding 

box and cropping the image based on those coordinates. The 

region of interest is the area of the image that contains the 

detected object. The cropped image is then converted to 

grayscale to simplify the analysis, and a binary threshold is 

applied to separate the object from the background. Binary 

thresholding converts the image to black and white, where the 

object is rendered in white (value 255) and the background in 

black (value 0). This highlights the shape of the object and 

removes irrelevant details. Next, geometric moments of the 

binarized image are calculated using OpenCV's cv2.moment’s 

function. These moments are statistical properties of the 

binarized image that describe the distribution of pixels. These 

moments are then transformed into Hu Moments using the 

cv2.HuMoments function. Finally, the Hu Moments are used 

to calculate the three-dimensional coordinates of the object, 

which are derived from the first three moments. These 

coordinates are sent to the ESP32 microcontroller to perform 

the manipulation and classification actions on the detected 

object. 

3.3. Training of the HuYOLO-NAS Model 

First, the runtime environment in Google Colab is 

configured to use the T4 GPU. Then, the super-gradients, 

albumentations, imutils, roboflow, pytube, supervision, and 

onemetric packages are installed. From the super_gradients 

package, Trainer is included to manage the training of the 

HuYolo-NAS model, dataloaders for data loading, as well as 

the coco_detection_yolo_format_val and 

coco_detection_yolo_format_train functions from 

dataloaders, which allow the use of data in YOLO format for 

training and validation. These imports facilitate detection and 

classification during the training process. Additionally, 

PPYoloELoss is incorporated for the PP-YOLO loss function, 

DetectionMetrics_050 for the calculation of detection metrics, 

and PPYoloEPostPredictionCallback for the post-processing 

of predictions. Also, the model’s module, which manages the 

detection models, is included. Next, the directory for the 

checkpoints and the name of the experiment are set. The 

variable CHECKPOINT_DIR is defined as 'checkpoints2', 

specifying the location where the model's checkpoints will be 

saved. Then, a training instance is created using the Trainer 

class, assigning the experiment's name as 'sign_yolonas_run2' 

and the checkpoint directory as CHECKPOINT_DIR, which 

allows the training results to be organized and stored 

efficiently. The dataset is exported from Roboflow to the 

Google Colab environment, and then the dataset parameters 

are loaded into a dictionary, which facilitates access to the 

information during training. In this dictionary, the path to the 

main data directory is defined, specifying data_dir, as well as 

the names of the directories for the training, validation, and 

test set images and labels. Finally, a list of class names is 

included under the classes key, allowing for structured data 

management during the training process. 

Then, the values from the dataset_params dictionary are 

assigned to the corresponding arguments to create the training, 

validation, and test datasets. For the training set, the 

coco_detection_yolo_format_train function defines the 

dataset parameters, including the path to the data directory, the 

training image and label directories, and the classes. The 

dataloader parameters are also configured, setting a batch_size 

of 16 and num_workers of 2. Similarly, the validation dataset 

is configured using coco_detection_yolo_format_val, 

specifying the validation image and label parameters. In 

addition, the test dataset is created with the same function, 

using the appropriate parameters for the test images and labels. 

Next, the model is created, now configured for finetuning. The 

yolo_nas_s model is instantiated using models.get(), 

specifying the number of classes with 

num_classes=len(dataset_params['classes']) and loading the 

pre-trained weights from coco. 

To define the training hyperparameters (Table 4), the 

Adam optimizer has been chosen, and additional parameters 

have been tuned, such as optimizer_params, which includes a 

weight_decay of 0.001, and EMA decay has been enabled 

(ema_params) with a value of 0.9. The initial learning rate 

(initial_lr) is set to 2e-4, with a cosine mode schedule and an 

initial warmup of lr_warmup_epochs for three epochs. 

Furthermore, training is performed with mixed precision 

(mixed_precision) and runs for 20 epochs. The loss function 

chosen is PPYoloELoss, set to the number of classes in the 

dataset, while DetectionMetrics_050 in valid_metrics_list will 

monitor the accuracy with a threshold of 0.1. To start training 

the model, the trainer.train command is run, in which the 

model to be trained (model), the training parameters 

(train_params), the training dataset (train_data), and the 

validation dataset (val_data) are specified. This process allows 

the model to be tuned according to the predefined metrics and 

configurations to optimize its performance. 

Finally, to obtain the best-trained model, the models.get 

function is used, specifying the name of the model, in this 

case, yolo_nas_s, the number of classes that are determined 

based on the dataset parameters, and the path to the checkpoint 

file (checkpoint_path) located at 

checkpoints2/sign_yolonas_run2/ckpt_best.pth. This file 

stores the most optimized version of the model, including the 

weights and configurations resulting from the training 

process, ensuring that the best results obtained are used, thus 

improving accuracy and performance in the task of detecting 

the four classes of recyclable solid waste: paper, cardboard, 

pet plastic, and hard plastic. 
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3.4. Design of the Robotic Arm “HuArm” 

3.4.1. Description of the Robotic Arm 

The robotic arm developed in this project was a 

mechatronic system with 4 Degrees of Freedom (DOF) 

intended to simulate an automated handling system for sorting 

recyclable solid waste. This model was structured based on a 

modular design of an industrial manipulator adapted for a high 

variability environment, such as solid waste sorting [38].The 

design considered the implementation of articulated links, and 

each mounted on a servomotor that provided sufficient torque 

to support and manipulate the links at each joint of the arm, 

maintaining precision and stability in the movements. Also, a 

gripping claw was included, and a design based on a finger 

gripper was chosen, controlled by a servomotor, which 

allowed precise manipulation of the objects during the tests. 

The control system (Figure 4) of HuArm integrates a power 

source that provides electricity to the entire system, thus 

ensuring the continuous operation of each module. Next, the 

HuYolo-NAS algorithm calculates the object's position and 

transmits this information to the ESP32 controller. In parallel, 

a capacitive sensor determines whether there is contact with 

the recyclable solid waste, sending this signal to the controller 

as well. With this data, the controller performs calculations to 

determine the optimal speed and angle of movement using 

inverse kinematics, which are then sent to the servomotors. 

Finally, the servomotors execute the instructions received, 

generating the precise movement that allows the robotic arm 

to place the solid waste in its respective container.

 
Fig. 4 Block diagram of HuArm operation

 
Fig. 5 HuArm design in Autodesk Inventor: (a) Front view, (b) Side view, (c) Top view, (d) 3D view
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Table 5. Table of results of strength and torque in the joints 

Joint 
Force 

(N) 

Torque 

(N·m) 

Torque 

(kg·cm) 

Gripper 5.14 0.46 4.72 

Joint 3 0.24 0.48 4.93 

Joint 2 0.24 0.51 5.15 

Joint 1 0.24 0.53 5.37 

Base 0.64 0.58 5.95 
Note: Force and torque values have been calculated for each joint, considering 

mass and distance from the rotation point. 

Table 6. Technical information on the SG5010 servo motor 

Features Details 

Dimensions 40.2*20.2*43.2 mm 

Torque 3.1Kg-cm (4.8V); 6.5Kg-cm (6.0V) 

Operating Speed 
0.17seg/60º (4.8V no load); 

0.4seg/60º (6V) 

Operating 

Voltage 
4.8-6 Volts 

Note: The table reflects the technical characteristics of the SG5010 servo 

motor provided by its datasheet from the company Tower Pro Pte Ltd. 

Table 7. Technical information on the LJC18A3 capacitive sensor 

Features Details 

Dimensions D18mm*L70mm 

Operation Voltage 6-36V DC 

Working Current 20mA max. 

Output Current (load) 300mA max. 

Detection range 1mm to 5mm 

Out NPN normally open type 

Weight 108 gr. 
Note: The table reflects the technical characteristics of the LJC18A3 

capacitive sensor provided by its datasheet from the company YUEQUING 

HENGWEI ELECTRONICS CO., LTD. 

3.4.2. Dimensions of the Robotic Arm 

For the realization of the robotic arm (figure 4), 4 DOF 

were considered because this type of model provided the 

ability to position and orient the tool precisely at any point in 

the work area [39]. The sizing was done in the Autodesk 

Inventor design environment using tools such as Line, Circle, 

Rectangle, Circular, Fillet, and Extrusion, among others. 

During the modelling, the base was started and progressively 

advanced towards the joints until finishing with the sizing of 

the claw intended for holding the solid waste. The final model, 

to scale, was printed in 3D using PLA material, which allowed 

for the assurance of structural precision.  

3.4.3. Selection of Servomotors 

For the selection of the servomotors, the calculation of the 

torques required for each joint was performed using Craig's 

formula. Therefore, the dot product between the vector 

describing the direction of the joint axis and the vector of 

moments acting on the link connected to said joint had to be 

calculated [39]. 

𝜏𝑖 = n𝑖
𝑇 ∙ Z𝑖 (2) 

𝜏𝑖: It is the torque required at joint i. 

𝑛𝑖: It is the vector that describes the direction of the axis 

of joint i. 

Z𝑖: It is the vector of moments acting on the link 

connected to joint i. 

In a robotic arm, since the force and the lever arm are 

perpendicular, the formula is simplified by calculating the 

product of the magnitudes of the force and the distance. 

Considering the system can manipulate materials such as 

plastic weighing 500 g, the torque calculations at each joint 

are adjusted to support both this weight and the arm 

components. Table 5 presents the force and torque values 

obtained for each joint, reflecting the effort required at each 

point of the system.  

The results obtained for each robotic arm joint show the 

force and torque values necessary for its correct operation. In 

the Gripper, a force of 5.14 N and a torque of 0.46 N m (4.72 

kg cm) are calculated, which ensures its handling capacity. As 

we move towards the joints, such as Joint 3, Joint 2 and Joint 

1, the torque values increase slightly, reflecting the additional 

effort each component must withstand. Finally, in the Base, an 

increase in force to 0.64 N is observed, with a torque of 0.58 

N m (5.95 kg cm), guaranteeing the stability and support of 

the entire system. With the values obtained from the torques, 

the selection of the servomotor that met the requirements of a 

minimum torque of 4.72 kg cm and a maximum of 5.95 kg cm 

was made. The most suitable servo motor was the SG5010, 

whose characteristics are presented in Table 6. 

3.4.4. Sensor Selection 

For selecting the capacitive sensor, criteria such as 

compact size to be placed on the gripper and low contact 

sensitivity to avoid errors in detection were considered. With 

these requirements, the LJC18A3 capacitive proximity sensor 

was selected, whose characteristics are detailed in Table 7. 

3.4.5. Selecting the Controller 

The controller selection considered all arm components, 

including the servo motors and the capacitive sensor. In 

addition, the memory capacity required to process the data 

provided by the Machine Vision System was considered. The 

ESP32-WROOM-32E, the Arduino Nano Every, and the 

Raspberry Pi Pico (Table 8) are widely used controllers in 

electronics projects, but they have significant differences in 

terms of capabilities and features. The ESP32-WROOM-32E 

is distinguished by its dual-core Tensilica LX6 processor at 

240 MHz, which gives it greater processing capacity 

compared to the Arduino Nano Every, which has an 8-bit 

processor at 20 MHz. In addition, the ESP32 has 520 KB of 

RAM, considerably more than the 6 KB of the Arduino Nano 

Every, allowing it to manage more complex processes and 

perform simultaneous tasks more efficiently. 
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Table 8. Comparison of drivers for HuArm 

Controller ESP32-WROOM-32E Arduino Nano Every Raspberry Pi Pico 

Processor Dual-core Tensilica LX6 a 240 MHz ATmega4809 (8-bit, 20 MHz) 
Dual-core ARM M.+133 

Mhz 

RAM 520 KB SRAM 6 KB SRAM 264 KB SRAM 

Storage 16 MB Flash 48 KB Flash 2 MB Flash 

Connectivity Wi-Fi y Bluetooth 4.2 Sin Wi-Fi ni Bluetooth Sin conectividad 

GPIOs 
34 pines E/S (Configurables como 

entradas o salidas) 

22 pines (14 digitales y 8 

analógicos) 
26 pines multifunción 

Interfaces I2C, SPI, UART, ADC (12 bits), DAC I2C, SPI, UART, ADC SPI, I2C, UART 

Operating 

Voltage 
3.3V 5V 3.3V 

Note: The table reflects the technical information of each controller selected as an option to control the robotic arm.

In terms of connectivity, the ESP32-WROOM-32E offers 

native support for Wi-Fi and Bluetooth 4.2, making it ideal for 

projects that require wireless communication – a feature that 

the Arduino Nano Every lacks. The Raspberry Pi Pico, 

meanwhile, also lacks wireless connectivity but offers a high-

performance option with its dual-core 133MHz ARM Cortex 

M0+ processor, paired with 264KB of RAM. However, its 

lack of wireless connectivity limits its versatility for projects. 

Finally, the number of GPIO pins is another relevant 

factor. The ESP32-WROOM-32E offers 34 configurable pins, 

making it more suitable for projects that require controlling 

multiple devices, such as servo motors. The Arduino Nano 

Every has 22 pins, with a mix of digital and analogue ones, 

while the Raspberry Pi Pico has 26 multi-functional pins, 

placing it between the previous two in terms of connection 

versatility. For the project, the ESP32-WROOM-32E was 

chosen due to its large number of configurable pins as outputs 

to control the servo motors and its high processing capacity, 

thanks to the 520 KB of RAM.  

3.4.6. HuArm Overview 

The final prototype of the HuArm consists of an ESP32-

VROOM-32E controller, 5 SG5010 servomotors, an 

LJC18A3 sensor and 17 3D-printed parts.  

3.5. Experimental Training Environment 

In the experimental environment, Google Colab was used 

for training, using the Tesla T4 GPU. At the end of the 

process, the file located at 

checkpoints2/sign_yolonas_run2/ckpt_best.pth was obtained, 

which allows the model to be run on a computer with the 

following specifications: an Intel Core i5-7300HQ processor, 

12 GB of RAM, Windows 10 Home Single Language 

operating system (version 22H2), and an NVIDIA GeForce 

GTX 1050 graphics card. Likewise, Python 3.11.9 and the 

inference-gpu package in PowerShell were used to integrate 

inference capabilities.  

The CUDA Toolkit 11.8 and cuDNN were used to 

optimize performance in neural networks. In addition, zlib was 

used to ensure the operation of the Visual Studio 2019 C++ 

libraries and runtime to complete the environment 

configuration, facilitating the execution of the model and the 

visualization of annotated images. To implement the model, 

the OpenCV library is imported along with SuperGradients. 

Through the models.get command, the yolo_nas_s model is 

loaded configured with 4 classes: 'cardboard', 'hard_plastic', 

'paper' and 'pet_plastic', using the previously mentioned 

weights file. Subsequently, the yolo_nas_s model is converted 

to ONNX (Open Neural Network Exchange) format, which 

allows its use in various platforms and machine learning 

frameworks, facilitating its implementation. The input form 

specified as (3, 640, 640) indicates that the model accepts 

640x640 pixel images with 3 color channels (RGB), which is 

essential for its correct execution on other systems that support 

ONNX. 

3.6. Evaluation Metrics 

To evaluate the performance of the proposed model in 

classifying recyclable solid waste into four classes, the mean 

average precision (mAP), precision and recall were used as 

key metrics. The mAP is a comprehensive indicator that 

reflects the effectiveness of detection in all categories included 

in the dataset. It is calculated by averaging the precisions 

obtained for each category 𝑖 within a total of C categories, 

expressed as follows: 

𝑚𝑃𝐴 =
∑ 𝐴𝑃𝑖

𝐶
𝑖=1

𝐶
 (3) 

In the context of this study, since four types of residues 

are considered, it is established that C=4. Precision, on the 

other hand, is defined as the proportion of samples that the 

model has correctly classified as belonging to a specific 

category in relation to the total number of samples identified. 

On the other hand, accuracy measures the proportion of 

correct predictions in the total number of cases; their 

respective formulas are presented below: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (5) 
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In the formulas, TP (True Positives) represents the 

number of correctly identified instances, while FP (False 

Positives) indicates instances incorrectly classified as positive 

when they are not. Similarly, FN (False Negatives) refers to 

instances that the model failed to correctly identify as positive, 

wrongly labelling them as negative. The recall, in turn, 

evaluates the proportion of samples that belong to a given 

category and have been properly recognized by the model. 

This metric is expressed as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (6) 

Additionally, the F1 score is the harmonic mean of 

Precision and Recall and is calculated using the following 

formula: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∙  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖ó𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖ó𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (7) 

To evaluate the trained model on the test set, the trainer. 

The test command is used, specifying the model best_model, 

the test data loader test_data, and a list of test metrics. In this 

case, DetectionMetrics_050 is used, setting score_thres to 0.5 

and allowing a maximum of 50 predictions per image. 

Additionally, normalize_targets is enabled, and a 

post_prediction_callback is implemented to tune parameters 

for subsequent predictions, including a score_threshold of 0.5, 

an nms_top_k of 30, max_predictions of 30, and an 

nms_threshold of 0.7. 

4. Results and Discussions 
4.1. Progress of Evaluation Metrics 

487 gradient updates are performed during each epoch, 

suggesting a constant fine-tuning process that avoids 

significant fluctuations and optimizes model performance 

without compromising convergence. Figure 6, developed in 

TensorBoard, shows the progress of mAP, precision, F1 score, 

and recall in each epoch.The mAP graph shows a continuous 

improvement trend throughout the 20 epochs. It is 0.65 in the 

second epoch but progressively increases until reaching 0.97 

in the last epoch. This behavior indicates that, as the model 

progresses in training, it significantly improves its ability to 

detect recyclable solid waste. The upward trend shows that the 

model is learning effectively and adjusting its predictions 

throughout the process. 

 
Fig. 6 Performance of the HuYOLO-NAS model during validation (a) mPA, (b) Accuracy, (c) F1 Score, (d) Recall

Regarding precision, the behavior is different. Precision 

reaches a maximum value of 0.90 in epoch 20. Throughout 

training, precision experiences some fluctuations but 

maintains an overall upward trend. Fluctuations in the middle 

epochs may indicate difficulties in avoiding false positives, 

but the continued improvement towards the end suggests that 

the model is managing to stabilise its ability to correctly 

identify recyclable waste. The F1-score follows a similar trend 

to the accuracy. In the beginning, the F1-score is low, but it 

gradually increases to around 0.85 in the last epoch. This 

reflects that, despite the initial fluctuations, the model 

improves its balance between accuracy and sensitivity as it 

progresses through training. The steady upward trend towards 

the end suggests that the model is effectively optimising both 

accuracy and sensitivity. The recall remains at high levels 

throughout training, starting at 0.00 in the first epoch and 

reaching 0.91 at epoch 20. Although it exhibits some small 

variations between epochs, the recall shows an overall positive 

trend. This indicates that the model has been consistent in its 

ability to correctly identify recyclable waste, reflecting its 

reliability in detecting relevant objects. 

4.2. Analysis of Inference Time and Learning Curve of the 

HuYolo-NAS Model 

Figure 7 presents the progress of the inference time and 

learning rate of the HuYOLO-NAS model over 20 iterations. 

First, the learning rate shows an evolution pattern that starts at 

extremely small values and increases sharply until reaching a 

value close to 4.8e-4 (0.00048) at iteration 4. Subsequently, 

the learning rate decreases steadily, reaching a value of 

approximately 5e-5 (0.00005) at iteration 19. This behavior is 

characteristic of the "one-cycle learning rate schedule", a 

strategy that seeks to balance initial exploration with 

subsequent fine-tuning to improve model efficiency and 



Bruno Muchotrigo-Albertis et al. / IJETT, 73(4), 258-278, 2025 

 

269 

prevent overfitting by avoiding premature convergence. As 

for the inference time during training (train_inference_time), 

the graph shows an evolution of time expressed in minutes. 

The inference time experiences an overall decrease from 

approximately 7 minutes and 50 seconds (470,000 ms) to 7 

minutes and 25 seconds (445,000 ms) over the 20 iterations. 

Although there is a downward trend, fluctuations can be 

observed throughout the process, such as an increase in the 

inference time at iteration 7, followed by several minor ups 

and downs. Towards the end of the iterations, the time seems 

to stabilize, albeit with a small spike. These results suggest 

that although the model optimizes the process as training 

progresses, certain adjustments and changes in the 

environment or the model can influence the fluctuations in the 

inference time at some epochs. 

4.3. Analysis of the Losses of the HuYolo-NAS Model 

Figure 8 presents a detailed analysis of the training and 

validation losses of the HuYOLO-NAS model over the 20 

epochs. In the overall loss, the reduction is notable: in the 

training set, the loss drops from 2.3 to 1.76, while in the 

validation set a decrease is also observed, from 2.4 to 1.65. 

However, fluctuations in validation are more pronounced, 

suggesting that the model has difficulties in generalising to 

new data, although it maintains a general trend of 

improvement. In classification, the training loss decreases 

from 1.2 to 0.88, reflecting an improved ability to classify 

residuals correctly. In validation, the classification loss 

decreases from 1.3 to 0.82 but with more oscillations, 

indicating that the model's ability to generalise across classes 

varies more when faced with unseen data.

 
Fig. 7 Inference time and learning rate of HuYOLO-NAS: (a) Train Inference Time, (b) Learning Rate 

Fig. 8 Loss analysis in training and validation: (a) Total Loss, (b) Classification Loss, (c) DFL Loss, (d) IoU Loss

In terms of edge localisation (DFL), the loss in training 

shows a steady improvement from 0.67 to 0.52, and in 

validation, the loss decreases from 0.64 to 0.48, although also 

with fluctuations. These oscillations in validation suggest that 

the model is more unstable when trying to locate edges when 

faced with validation data, which could be improved with 

adjustments in regularisation or data augmentation. Finally, in 

the Intersection over Union (IoU) metric, the loss also 

decreases in both datasets: in training, it goes from 0.47 to 

0.34, while in validation, it decreases from 0.44 to 0.30. 

Although some fluctuations are observed, the overall trend of 

improvement indicates that the model is achieving higher 

accuracy in object localisation, which is crucial for practical 

applications such as sorting recyclable waste.  
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Table 9. Values of the metrics in the validation of the HuYOLO-NAS 

model 

Performance Valor 

Loss of Classification 0.7643 

Loss IoU 0.2895 

Loss DFL 0.4555 

Total Loss 1.5094 

Precision 0.7729 

Recall 0.9445 

mAP 0.9320 

F1 Score 0.8374 
Note: The values reflect the performance of the HuYOLO-NAS model during 

the validation process 

4.4. Evaluation in the Validation of the HuYOLO-NAS 

Model 

In the test performed (Table 9), the results of the 

HuYOLO-NAS model reflect outstanding performance in 

various detection metrics. The precision of 77.29% of the 

predictions made was correct, suggesting a good ability to 

identify relevant objects with a low percentage of false 

positives. This is particularly important in classification tasks, 

where high precision ensures that the detected objects are 

relevant. On the other hand, the model detected 94.45% of all 

objects present, highlighting its excellent ability to identify the 

most relevant elements without leaving many false negatives. 

This balance between precision and recall shows that the 

model has a high level of sensitivity, which is crucial for real-

time applications that require high object detection without 

overlooking important elements. The mAP of 0.9320 

demonstrates that the model maintains a good balance 

between precision and recall, which is critical for accurate 

object detection across a range of IoU thresholds. The mAP at 

0.50 of 0.9320 demonstrates that the model maintains a good 

balance between accuracy and recall, which is critical for 

accurate object detection over a range of IoU thresholds.  

This value reflects that the model not only correctly 

detects many objects but also has a high accuracy rate in its 

predictions. The F1 Score of 0.8374 reinforces this 

conclusion, showing that the model achieves an excellent 

combination of accuracy and sensitivity. Regarding 

localisation, the classification loss of 0.7643 and IoU loss of 

0.2895 suggest that, although the model performs well in 

object identification and localisation, there is room for further 

optimisation in these areas, especially in the accuracy of 

bounding boxes.  

The DFL loss of 0.4555 reflects the model's ability to 

correctly predict solid waste centre points, and the overall loss 

of 1.5094 shows satisfactory overall performance. Overall, 

these metrics highlight the model's effectiveness in detecting 

and locating recyclable waste. However, there is still room for 

improvement in specific areas, such as classification and 

accurate edge location. In addition to the key metrics, the Best 

Score Threshold of 0.7400 indicates the optimal threshold the 

model uses to classify detections, which is essential to adjust 

the balance between accuracy and recall, depending on the 

task's requirements. This value suggests that the model is 

tuned to maximise its performance, obtaining a good 

compromise between avoiding false positives. In that sense, 

the loss metrics, such as classification loss and IoU loss, 

together with the F1 score, show tha the HuYOLO-NAS 

model is well balanced in terms of efficiency and accuracy in 

the classification and localisation of solid recyclable waste. 

4.5. Confusion Matrix of the HuYOLO-NAS Model  

Analysis of the metrics obtained in the classification of 

recyclable solid waste with the HuYolo-NAS model reveals 

uneven performance between the different classes, 

highlighting both the strengths and areas for improvement of 

the model. In the Cardboard class, the accuracy is remarkably 

high, with a value of 0.9897, meaning that most of the 

predictions made as positive are correct. However, the recall 

is lower (0.8271), indicating that the model omits a significant 

number of cardboard residuals, with 60 false negatives. 

Although the model has a good hit rate, it does not detect all 

residuals in this class, a major limitation in its performance.  

The F1 score of 0.9011, which measures the balance 

between accuracy and recall, is a favourable value and 

suggests that, despite the false negatives, the model is still 

performing well. However, improving recall in this class 

could increase the model's effectiveness without sacrificing 

accuracy. The model shows an outstanding performance for 

the Hard Plastic class, with a recall close to 100% (0.9935) 

and only 2 false negatives, showing that most hard plastic 

waste is correctly identified. The accuracy of 0.9747 is also 

high, although there are 8 false positives, suggesting that the 

model sometimes incorrectly classifies materials from other 

classes, such as hard plastics. Despite these false positives, the 

F1 score of 0.9840 is very high, confirming that the model 

performs exceptionally well classifying this class.  

However, reducing the false positives could further 

improve the accuracy without losing the ability to detect the 

class effectively. For the Paper class, the model achieves an 

accuracy of 0.9934, implying that positive predictions for 

paper are generally correct. The recall of 0.9494 is also quite 

high, meaning the model correctly identifies most paper waste, 

although 16 false negatives persist. The F1 score of 0.9709 

reflects a good balance between precision and recall, 

suggesting that the model adequately handles this class. 

However, as with the Cardboard class, improving the recall 

rate could help increase the model’s accuracy without 

compromising precision. In the Pet Plastic class, the model 

presents an accuracy of 0.9286, indicating a reliable 

classification but with room for improvement. On the other 

hand, the recall is lower (0.7948), meaning that the model is 

missing a significant amount of PET plastic waste, with 47 

false negatives. Although the F1 score of 0.8565 is acceptable, 

this value reflects that the model could improve in terms of 
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detecting this class. The low recall is a concern, as it suggests 

that the model does not identify all PET waste despite its high 

accuracy. To improve performance in this class, it would be 

advisable to adjust the classification thresholds or implement 

additional techniques that allow for better isolation of PET 

plastic waste. Finally, the global mAP (Mean Average 

Precision) of 0.4472 reflects a moderate model performance 

overall. Although classes such as Hard Plastic and Paper 

perform outstandingly, the Pet Plastic class negatively affects 

the global average, underlining the disparity in performance 

between classes. The mAP is a measure that highlights the 

model's ability to correctly classify in a multi-class context. 

However, the moderate average suggests that despite good 

results in some classes, the model needs to be fine-tuned in the 

lower-performing classes to achieve greater homogeneity in 

its predictions. 

 

 
Fig. 9 Confusion matrix of the HuYolo-NAS model
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The confusion matrix reveals that, while the model is 

highly accurate in its predictions, it has notable shortcomings 

in the sensitivity of certain classes. Specifically, 60 real 

instances are missed in cardboard, resulting in a recall of 

82.71% despite near-perfect accuracy (98.97%), suggesting 

that the model is conservative in labelling this class and could 

benefit from less stringent thresholds. In Hard Plastic, 

detection is almost flawless, with only 8 false positives and a 

recall of 99.35%, indicating an outstanding ability to identify 

this category without confusing it with others. On the other 

hand, the Paper class shows a robust balance, although the 16 

false negatives reflect a slight loss in complete detection, at a 

recall of 94.94%.  

The greatest concern arises in the Pet Plastic class, where 

47 instances are missed, resulting in a recall of 79.48% and 

evidencing that the model fails to capture a significant portion 

of this class despite a reasonable accuracy of 92.86%. These 

findings suggest that to improve overall performance, 

adjusting thresholds and optimising pre-processing, especially 

for Cardboard and Pet Plastic, is essential to achieve greater 

homogeneity in detecting recyclable waste.

Table 10. Performance of HuYolo-NAS in multi-label classification of recyclable solid waste 

Class Precisions (%) Recall (%) F1 Score (%) Exactitude (%) mPA (%) 

Cardboard 98.97 82.71 90.11 82.55 90.11 

Hard Plastic 97.47 99.35 98.40 97.22 98.40 

Paper 99.34 94.94 97.09 95.01 97.09 

Pet Plastic 92.86 79.48 85.65 83.13 85.65 

Overall 92.41 88.12 92.06 89.23 92.06 
Note: This table presents the results of precision, recall, F1 score, accuracy and mPA for each class of residues in the HuYolo-NAS model

The confusion matrix shows that the model incurs 60 false 

negatives in the Cardboard class, resulting in a recall of 

82.71% despite an accuracy of 98.97%, indicating that, 

although the positive predictions are almost always correct, 

real instances of cardboard are missed. In Hard Plastic, 8 false 

positives are reported, allowing for a near-perfect recall of 

99.35% and an accuracy of 97.47%, evidencing very robust 

detection with minimal confusion. The Paper class registers 

16 false negatives, reflecting a solid balance with a recall of 

94.94% and an accuracy of 99.34%, while Pet Plastic has 47 

false negatives, resulting in a recall of 79.48% and an accuracy 

of 92.86%. These results indicate that the model has 

shortcomings in detecting instances in the Cardboard and Pet 

Plastic classes, suggesting the need to adjust the thresholds 

and improve the preprocessing to increase the sensitivity and 

homogeneity of the predictions. In conclusion, although the 

HuYolo-NAS model performs well overall, with outstanding 

performance in some classes, there are clear areas for 

improvement, particularly in the Pet Plastic class. Threshold 

adjustment, additional data processing or refinement in 

detecting specific classes could significantly improve the 

model's performance, raising both its accuracy and recall in 

the lower-performing classes. Next, we proceed to inference 

with the trained model, using the Supervision library to 

manage and process the model's detections. 

4.6. Comparison of Metrics between Classes of Solid Waste 

Table 10 shows clear differences in the performance of 

the HuYolo-NAS model between the residue classes, which 

allows the identification of specific areas for improvement. In 

the Cardboard class, the accuracy is very high (98.97%), 

meaning that almost all instances identified as cardboard are 

correct; however, the recall (82.71%) indicates that the model 

misses approximately 17% of the real cases, suggesting that 

thresholds should be adjusted or more examples incorporated 

to reduce false negatives in this category. On the other hand, 

the Hard Plastic class achieves an accuracy of 97.47% and an 

almost perfect recall (99.35%), which is reflected in an F1 

score of 98.40%, evidencing almost error-free detection in 

terms of both false positives and false negatives. 

The Paper class shows a solid balance, with an accuracy 

of 99.34% and a recall of 94.94%, yielding an F1 score of 

97.09%; these results indicate that the model manages to 

capture most paper instances with very few errors. In contrast, 

the Pet Plastic class has an accuracy of 92.86%, but its recall 

is low (79.48%), resulting in an F1 score of 85.65%. This 

means that, although Pet Plastic's predictions are largely 

correct, the model fails to detect a considerable proportion of 

instances, negatively impacting this class's overall 

performance. Overall, the global averages (precision 92.41%, 

recall 88.12%, F1 score 92.06% and accuracy 89.23%) reflect 

robust system performance. However, the variability between 

classes indicates the need to optimise the model, especially for 

Pet Plastic detection and, to a lesser extent, for cardboard, 

where increasing recall could significantly improve overall 

effectiveness without compromising the high accuracy 

achieved in the other categories. 

To visualise the set of predicted images, 

sv.DetectionDataset.from_yolo loads the dataset in YOLO 

format, accessing the images and their annotations; 

subsequently, the best_model.predict variable makes 

predictions on each image by applying a confidence threshold 

to limit the relevant detections, while sv.Detections organise 

the coordinates of the bounding boxes, the confidence and the 

detected classes. Finally, the Supervision libraries are used to 

manage the annotations and predictions, NumPy to adjust the 

coordinates, OpenCV to draw and label the predictions on the 

images, and Matplotlib to visualise them (Figure 10). 
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Fig. 10 Recyclable solid waste detection results of the HuYolo-NAS model 

4.7. Comparison of Performance in Different Dimensions of 

the Dataset 

Table 11 shows the performance of the HuYOLO-NAS 

model in the multi-label classification of solid recyclable 

waste using different input resolutions, with a partition of 70% 

for training, 10% for validation and 10% for testing. The 

average values of five key metrics are presented: precision, 

recall, F1 Score, accuracy and mPA. Each metric is evaluated 

to verify model performance at different image sizes, which 

allows for identifying the optimal resolution to maintain a 

balance between detection quality and computational 

efficiency.  

The 416x416 and 320x320px resolution show superior 

accuracy, reaching an average of 53.41%. This suggests that 

both resolutions have a lower number of false positives 

compared to the larger resolutions. This behaviour is 

appropriate where incorrect detections need to be minimised, 

as higher accuracy indicates a higher proportion of correct 

predictions among all positive detections. 

Table 11. Overall performance of HuYOLO-NAS at different resolutions for multi-label classification of recyclable solid waste 

Resolution (px) Precision (%) Recall (%) F1 Score (%) Accuracy (%) mPA (%) 

640x640 52.78 72.54 60.79 79.92 63.34 

512x512 49.12 72.15 58.57 79.43 62.88 

416x416 53.41 73.52 61.64 80.45 63.67 

320x320 53.41 73.52 61.64 80.45 63.67 
Note: This table presents the average results of precision, recall, F1 score, accuracy, and mPA for the HuYOLO-NAS model at different input resolutions of 

640x640px, 512x512px, 416x416px, and 320x320px. 
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The recall metric is slightly higher for the 416x416 and 

320x320 datasets, reaching a value of 73.52%. This indicates 

that these resolution sizes allow capturing a higher number of 

true positives compared to the 640x640 and 512x512 

resolutions, resulting in improved object detection coverage. 

In classification tasks, a high recall is desirable, as it ensures 

that the model identifies the most positives, reducing the risk 

of false negatives. The 416x416 and 320x320 resolutions also 

achieve the highest F1 Score with 61.64%.  

This indicator reflects a good balance between accuracy 

and recall, which is fundamental in classification tasks where 

both aspects are critical. A high F1 Score suggests that these 

resolutions allow for a balanced performance between 

minimising false positives and false negatives, which is key 

for effective and reliable classification. In terms of accuracy, 

the 416x416 and 320x320px resolutions again stand out, with 

an average of 80.45%. This value shows that these resolutions 

have a higher hit ratio compared to larger resolutions, 

implying a higher level of correct predictions for both true 

positives and true negatives. Therefore, these resolutions 

could be a preferred option when seeking to maximise the 

overall correct prediction rate. 

The mPA metric also follows a similar pattern, with the 

highest values obtained for the 416x416 and 320x320 

resolutions, reaching 63.67%. This metric measures the 

average accuracy per pixel and, in this case, highlights the 

effectiveness of these resolutions in tasks where detailed 

evaluation at the pixel level is important. The high mPA 

indicates that the model maintains solid performance in 

granular-level accuracy, which is relevant in segmentation or 

exhaustive detection tasks. Overall, 416x416 and 320x320px 

datasets offer slightly better and more balanced performance 

in almost all metrics evaluated, compared to 640x640 and 

512x512 resolutions. This analysis suggests that, for this 

specific task, a medium resolution (such as 416x416 or 

320x320) could be more efficient and effective, providing an 

optimal balance between precision, recall, F1 Score and 

accuracy. Furthermore, opting for these resolutions could 

reduce the computational cost, making the model more viable 

in terms of processing and storage without compromising 

classification performance. 

4.8. Implementation of the Code with the Robotic Arm 

Once the accuracy of the HuYolo-NAS model was 

corroborated, it was implemented in conjunction with a 

robotic arm in charge of moving the identified solid waste to 

the corresponding containers. Figures 12, 13, 14, 15 and 16 

show an example of the functional robot in action, carrying 

out the transfer of a box. 

4.9. Advantages of HuYOLO-NAS Over Advanced Machine 

Vision Techniques 

The proposed HuYOLO-NAS demonstrated superior 

performance compared to state-of-the-art techniques reported 

in the state of the art, such as DSYOLO-trash [17], GCDN-

Net [18] and methods based on ShuffleNet v2 enhanced with 

Yolov5s [19]. This model integrated the YOLO-NAS 

architecture with the Hu Moments algorithm, resulting in 

three-dimensional coordinates invariant to geometric 

transformations and, thus, more accurate spatial localisation 

of recyclable waste in highly variable environments.  

The rigorous pre-processing and labelling of the EcoSight 

dataset, consisting of 8,400 images from automated and 

private sources, facilitated robust pattern learning, which was 

reflected in a mAP of 93.20% and a recall of 94.45%. These 

metrics show that the model minimises both false positives 

and negatives, overcoming the limitations of approaches that 

rely exclusively on deep feature extraction in controlled 

scenarios. 

Furthermore, integrating the HuYOLO-NAS model with 

the HuArm robotic arm provided added value by allowing the 

translation of the detection into physical actions through 

accurate inverse kinematics calculations and real-time 

communication with the ESP32-WROOM-32E. This synergy 

between machine vision and robotics optimises the waste 

sorting and handling process, reducing human intervention 

and improving operational efficiency, unlike other techniques 

described in the literature that focus only on sensing without 

addressing the automated handling process. Overall, the 

combination of a robust adaptive architecture, a 

comprehensive pre-processing process and integration with a 

functional robotic system allows HuYOLO-NAS to 

outperform existing techniques, offering a scalable and 

efficient solution for sorting solid recyclable waste in high 

variability environments. 

4.10. Implementation Challenges 

Implementing the HuYolo-Nas model with the HuArm 

presented several challenges during its development. The 

model training time, coupled with the need for a varied image 

database, presented a greater challenge than anticipated. It was 

necessary to expand the dataset by capturing new images to 

improve the effectiveness of the HuYolo-Nas model, which 

prolonged the process. In addition, equipment with adequate 

performance and a stable training environment were required 

to avoid interruptions and minimise detection errors. 

The design of the HuArm underwent multiple 

modifications due to the diversification of the servomotors 

used to control each degree of freedom, as well as the need to 

ensure sufficient reach distance to move the solid recyclable 

waste from the starting point to the final deposit. This problem 

was mainly due to the absence of a specific reference for the 

optimal design of a claw-type robotic arm. Also, the 

interaction between the model and the arm was disrupted due 

to the lack of a freely programmable and low-cost control 

device to establish a wireless connection with the computer to 

accurately transmit the movement coordinates. 
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Fig. 11 Inference results of the HuYolo-NAS model 

 
Fig. 12 HuArm operation: (a) HuArm arm positioning itself, (b) Taking the solid waste, (c) Lifting solid waste, (d) Being placed in a 

position to leave the solid waste 

5. Conclusion 
Throughout the training of the HuYOLO-NAS model, 

significant progress has been observed in the evaluation 

metrics, aligned with the purpose of classifying recyclable 

solid waste to optimize separation in recycling in highly 

variable environments. First, a progressive improvement was 

obtained in the mAP (Figure 6), which went from 0.7608 to 

0.9504, indicating an increasingly precise recyclable solid 

waste detection capacity. This result suggests that the model 

has achieved an accurate classification of the four types of 

recyclable waste predicted in the dataset, fulfilling the 

objective of improving classification. 

Regarding precision and F1-score, although in the first 

epochs, there were fluctuations (Table 4), at the end of 

training, consistent values were reached, with precision 

increasing from 0.7608 to 0.9504 and F1-score improving 

from 0.04011 to 0.07716. This performance reflects the 

model’s ability to effectively learn and generalize recyclable 

waste, contributing to the optimization of the sorting process 

in a dynamic recycling environment. The recall (Figure 7) 

showed outstanding performance, increasing from 0.9748 to 

0.9985, demonstrating that the model effectively detects 

almost all recyclable waste, even under high variability 

conditions. This is a key result in meeting the objective of 

accurate sorting. In the loss analysis (Figure 9), a steady 

decrease was observed in both sorting losses, DFL and IoU, 

reflecting an improvement in the model’s ability to identify 

and locate solid waste. The total loss went from 2.35 to 1.829, 

while in validation, it decreased from 2.25 to 1.6 (Table 3), 

indicating an improvement in the model’s generalized 

learning. 

In terms of the tests performed with the test set, the model 

achieved an accuracy of 0.531 in the first test and 0.368 in the 

second, showing how the reduction in the score threshold and 

the variability in the NMS threshold affect accuracy (Figure 

8). However, this adjustment favoured higher recall, which is 

valuable to ensure that the system classifies the majority of 

recyclable waste correctly. The mAP remained stable, with 

values ranging from 0.9522 to 0.9509 (Figure 5), reflecting 

that threshold reduction did not significantly compromise 

sorting ability. 

The confusion matrix (Figure 8) revealed that some 

classes, such as hard_plastic, presented a low precision due to 

a high number of false positives, but the pet_plastic class 

showed the best performance, with a precision of 0.8753 and 
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accuracy of 0.8833 (Table 6). This indicates that the model is 

more effective in classifying certain classes, which will allow 

future optimizations to improve performance in less accurate 

classes. In the performance analysis at different resolutions, it 

was observed that resolutions such as 416x416 and 320x320 

(Figure 11) provide a good balance between accuracy, recall, 

and computational performance. These sizes achieved a mAP 

of 63.67% (Table 7), suggesting that an intermediate 

resolution optimises both detection capability and 

computational efficiency, which is crucial in dynamic 

recycling environments where time and resources are limited. 

Furthermore, the findings of this study are closely linked 

to existing waste management policies, particularly the 

Integrated Solid Waste Management Law enacted in Peru [1]. 

Implementing technologies such as HuYOLO-NAS supports 

government efforts to improve waste separation and recycling 

efficiency, which is crucial to promoting sustainable resource 

management. The system's ability to operate in highly variable 

environments reinforces the need to adopt innovative 

solutions that leverage current policies, thus facilitating the 

transition towards more sustainable waste management 

models.  Finally, the HuYOLO-NAS model has proven to be 

effective in sorting recyclable solid waste, achieving high 

levels of accuracy and recall, and showing optimal 

performance in environments with high variability. The 

analysis also highlights the importance of tuning the model 

parameters and resolution to maximise its efficiency, which 

meets the research objectives. 

5.1. Recommendations 

To improve the model's performance in classifying 

recyclable waste, it is recommended to adjust the 

classification threshold, especially for classes with low recall, 

such as Pet Plastic. This will help reduce false negatives and 

improve detection. In addition, it would be useful to 

implement data augmentation techniques to increase the 

variability of these classes and strengthen their recognition. 

Regarding object localization, it is necessary to continue 

optimizing the hyperparameters to reduce fluctuations in the 

localization metrics and improve accuracy in the bounding 

boxes. This is key to avoiding errors in detecting small or 

partially covered objects. It is also observed that, although 

inference times have improved, fluctuations continue to exist. 

Additional optimisation techniques, such as quantization or 

pruning, are recommended to reduce these variations and 

improve consistency in processing time. Finally, it would be 

beneficial to continue enriching the dataset, particularly with 

under-represented classes, such as Cardboard and Paper, to 

improve the generalisability of the model in various scenarios. 

Diversification and expansion of the data will allow the model 

to better adapt to variations in the conditions of the recycling 

environment. 
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