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Abstract - An ulcer is a sore or lesion that forms in the coating of Gastro Intestinal (GI) area. The most common ulcers develop 

in the small intestine and stomach. In GI, ulcers tract potentially led to serious conditions like Crohn’s disease and ulcerative 

colitis. Conventionally, detection of ulcers in the GI tract involves endoscopy techniques, which are uncomfortable for patients, 

and these methods may not effectively visualise the small intestine area. Therefore, WCE is the essential diagnostic task for 

examining the GI tract. Conventionally, ulcer detection using machines and DL methods has been developed through early 

detection and treatment. However, achieving accurate ulcer detection with minimal time complexity is a significant challenge. A 

novel technique called Camargo’s Indexive Kuwahara Filtering Based Affine Invariant Sliced Regression (CIKF-AISR) is 

introduced to enhance accuracy and minimise time complexity. The proposed CIKF-AISR technique includes three major 

processes: image acquisition, preprocessing and feature extraction. First, the numbers of WCE images are collected from the 

dataset. After the image acquisition, preprocessing is carried out to eradicate noise and protect edges by applying an adaptive 

Camargo’s indexive Kuwahara filtering technique for image smoothing. This helps to reduce MSE and increase PSNR. The 

segmentation and feature extraction process are executed to minimise the time complexity of ulcer detection. Von Neumann 

locality segmentation is employed to segment the image into different regions and extract the ROI with the help of Canberra 

distance measure between the image pixels. Then, dissimilar features are extracted using the Affine invariant saliency Sliced 

regression method. After extracting the features, ulcer detection is performed with higher accuracy. Experimental evaluation is 

carried out on several factors. The analysed results indicate that the CIKF-AISR technique achieved better performance in 

accuracy, PSNR, and precision and less time compared to conventional methods. 

Keywords - Adaptive camargo’s indexive kuwahara filtering technique, Affine invariant saliency, Sliced regression method, 

Ulcer detection, Von Neumann locality segmentation, Wireless capsule endoscopy images. 

1. Introduction 
An ulcer is a lesion that forms in the lining of an organ. 

An ulcer occurs in various body parts, including the stomach 

and small intestine. Ulcer detection is vital in healthcare for 

timely treatment and preventing further complications such as 

bleeding, perforation, or infection. Ulcer detection typically 

involves analysing medical images, such as endoscopic 

images, radiographic images, dermatological images, etc, to 

identify lesions. Among the various images, wireless capsule 

endoscopy images have emerged as a valuable tool in 

diagnosing and managing GI disorders since they provide 

high-resolution images for accurate detection. Several ML and 

DL models have been developed to accurately detect ulcers. 

To enhance the visibility of WCE images, deep CNN [1] was 

developed. This results in improved contrast and sharper 

edges by amplifying the noise. However, achieving accurate 

ulcer detection with minimal time complexity remains a 

challenging issue for optimal performance. An integration of 

generative adversarial networks and Variational Autoencoders 

(VAE-GAN) for ulcer detection was developed in [2]. 

However, challenges in improving the accuracy of ulcer 

detection due to difficulties in segmenting ROI. For the 

classification of ulcers and erosion, the CNN model was 

introduced in [3]. However, the issue of image quality analysis 

performance remained unresolved. Endoscopic images were 

categorised in [4] via DL. In [5], the CNN–FFNN and the 

CNN–XGBoost model were developed for diagnosing 

gastrointestinal diseases based on endoscopy images. 

However, the developed hybrid models did not achieve more 

accuracy with minimal time. In [6], three-dimensional deep 

http://www.internationaljournalssrg.org/
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CNN was introduced for automatic multiclass classification 

based on spatiotemporal information using WCE images. 

However, it did not explore additional investigation to fully 

utilise the rich information for classification. To categorise 

tiny bowel CE images, ML algorithms were developed [7]. 

However, the time complexity of detecting the ulcerated 

mucosa was higher. A fully automated method was designed 

in [8] based on deep learning for ulcer detection with higher 

accuracy. However, the segmentation was not accurate 

enough to minimise computational time. Endoscopic images 

are diagnosed [9] by a multi-method system. To automatically 

discover ulcers and erosions, multi-brand CNN was 

introduced in [10].  

However, the accuracy of ulcer detection was not 

improved. A CNN model was developed in [11] for 

categorising Gastrointestinal tract diseases using wireless 

endoscopy images to speed up processes and increase 

efficiency. However, accurately diagnosing diseases was 

difficult even with a large dataset. A deep learning framework 

called ResNet50 was developed in [12] for detecting the 

severity of ulcerative colitis in capsule endoscopic images. 

However, it does not effectively reduce the time consumption 

for severity classification. Artificial intelligence models were 

developed in [13] to predict ulcerative colitis. However, the 

accuracy of ulcerative colitis prediction was not analysed. The 

Class-Balanced High-Resolution Network was developed in 

[14]. However, ulcerative colitis detection was not performed 

with a larger number of samples. In [15], numerous DCNNs 

were introduced to discover the identification of ulcerative 

colitis. However, huge datasets were not considered for 

ulcerative colitis detection. The above existing methods 

challenge the issue of optimal performance utilised to obtain 

accurate ulcer detection with reduced time complexity. Then, 

the accuracy of ulcer detection failed to improve the 

challenging issues in segmenting ROI. The model of the 

hybrid method failed to improve the accuracy with less time. 

The segmentation was not accurate and adequate to reduce 

computational time. The shortcoming of the proposed method 

using the accuracy of endoscopic diagnosis depends on the 

endoscopist’s technical skill and clinical experience; it failed 

to improve the accuracy and precision. To overcome these 

issues, proposed Camargo’s Indexive Kuwahara Filtering 

Based Affine Invariant Sliced Regression (CIKF-AISR) is 

introduced to enhance the accuracy with minimal time 

complexity in ulcer detection. 

1.1. A Novel Contribution of the Paper 

• The CIKF-AISR technique has been developed to 

enhance the accuracy of ulcer detection by including 

several processes, namely preprocessing, segmentation, 

and feature extraction. 

• A novelty of adaptive Camargo’s indexive Kuwahara 

filtering method is determined to improve the PSNR by 

using the CIKF-AISR technique for removing the noise 

artifacts from input endoscopy images. 

• A novel Von Neumann locality segmentation method is 

designed to reduce the ulcer detection time via CIKF-

AISR technique to extract ROI as of image depending on 

Canberra distance measure. 

• A novelty of the affine invariant saliency Sliced 

regression method is performed to enhance the accuracy 

of ulcer detection and precision in extracting significant 

features. These significant features are used for accurate 

ulcer detection. 

• Evaluate the performance of our CIKF-AISR technique 

using comprehensive experimentation conducted with 

different evaluation metrics. 

1.2. Organisation of Paper 

The rest of the paper is structured as follows: Section 2 

reviews related works. In Section 3, the proposed CIKF-AISR 

technique is described in detail. Section 4 presents 

experimental evaluation with dataset description. 

Experimental results and a comprehensive quantitative 

analysis are discussed in section 5. In section 6, details about 

discuss the potential part of our proposed work. Finally, 

Section 7 provides the conclusion of the paper. 

2. Literature Survey 
Endoscopic severity grading of ulcerative colitis was 

detected [6] with DL. However, it could not accurately 

determine the more detailed automated assessment of a 

patient’s ulcerative colitis status. Fully automated endoscopic 

disease activity evaluation of ulcerative colitis was developed 

in [17]. However, the development and validation methods 

were not applied to distributed disease severity datasets. The 

severity of ulcerative colitis was determined in [18] by 

Pyramid Hybrid Feature Fusion. However, time complexity 

was not minimised. Patients with ulcerative colitis were 

distinguished in [19] by the DL algorithm. Ulcerative colitis 

was predicted [20] by a DL-based system. However, it failed 

to improve its feature extraction capability to enhance the 

classification performance. 

For accurately evaluating endoscopic images from 

patients, DNN for an estimate of Ulcerative Colitis was 

introduced in [21]. DL method distinguishes different types of 

inflammatory bowel disease. However, multi-task algorithms 

were not employed to accurately classify ulcerative colitis 

disease severity. Automated and quantitative calculations of 

universal endoscopic illness severity of ulcerative colitis were 

introduced in [22].  

A recurrent neural network was introduced in [23] for 

detecting ulcerative colitis. However, the accuracy of 

predicting ulcerative colitis was not enhanced. Deep CNN was 

designed [24] to detect gastrointestinal abnormalities from 

endoscopic images. However, it failed to improve the accurate 

and time-saving abnormality detection. DCNN architecture 

was designed. However, DCNN did not improve the 

classification performance. A new pathology-sensitive deep 
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learning model was developed. However, it failed to 

effectively perform anomaly detection and classification with 

a greater number of videos. A multi-layer perceptron artificial 

neural network was designed to evaluate the diagnostic 

performance of ulcerative colitis. Two Convolutional Neural 

Network (CNN) models were developed using endoscopic 

images. A Deep Learning (DL) model was designed to 

identify Ulcerative Colitis disease patterns through three 

binary classification tasks.  

Motivated by the above aspects, we present ulcer 

detection using machine and DL algorithms. Preprocessing is 

performed to remove the noise and also defend edges by 

applying an adaptive Camargo’s indexive Kuwahara filtering 

technique for image smoothing. This helps to reduce MSE and 

increase PSNR. After that, the segmentation and feature 

extraction process are executed to reduce the time complexity 

of the ulcer detection.  

Von Neumann locality segmentation is determined to 

segment the image into several regions and extract the ROI 

with the aid of Canberra distance measure between the image 

pixels. Then, dissimilar features are extracted using the Affine 

invariant saliency Sliced regression method. After extracting 

the features, ulcer detection is performed with improved 

accuracy. 

3. Proposal Methodology 
Ulcer diseases are a major health concern, affecting many 

people worldwide. These are characterised by lesions that 

develop on the inside layer of the stomach, small intestine, or 

other areas of the gastrointestinal area. A common symptom 

of ulcer diseases includes abdominal pain, indigestion, nausea, 

and vomiting. Detecting ulcer diseases at an early stage is 

crucial for effective management and treatment. Ulcer 

detection improved using WCE images of the GI tract. CIKF-

AISR developed. It captures GI tract images to visualise an 

apparent view of the internal parts of the human body, unlike 

conventional endoscopy techniques. WCE offers a less 

persistent and more comfortable alternative for patients than 

the traditional endoscopy. The patient ingests the small 

capsule containing the miniature camera and transmits images 

because it passes through the digestive system. 

Conventionally, ulcer detection using machines and DL 

algorithms has been developed in early detection and 

treatment. However, achieving accurate ulcer detection with 

lesser time complexity faces major challenges. CIKF-AISR 

method was utilised to improve ulcer detection accuracy with 

minimal time and a higher peak-signal-to-noise ratio. 

Architecture diagram of proposed CIKF-AISR technique for 

accurate detection of Ulcer detection with WCE images 

demonstrated in Figure 1. The proposed ulcer recognition 

technique involves image acquisition, preprocessing, 

segmentation, and feature extraction. 

 
Fig. 1 Block diagram of proposed CIKF-AISR 

 
Wireless Capsule 

Endoscopy (WCE) Image 

Dataset 

 

Adaptive Camargo's indexive Kuwahara Filtering Based Image Preprocessing 

 

 
 

 
 

Collect Number of WCE Images 

 

Image Acquisition 

Von Neumann Locality ROI Segmentation 

Affine Invariant Saliency Sliced Regression-Based Feature Extraction 

 

Accurate Ulcer Detection 
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3.1. Image Acquisition 

It has the procedure of collecting the WCE image as of 

the Hyper-Kvasir dataset. It has a widely unconfined GI tract 

image dataset for ulcer detection. It is separated into four 

separate elements Labeled image data, unlabeled image data, 

segmented image data, as well as annotated video information. 

Amongst these parts, labeled images were employed to 

estimate the experimental. From the labeled images, ulcer 

WCE images were gathered to find the disease. 

3.2. Preprocessing 

Preprocessing is a fundamental step in achieving higher 

WCE image quality for further analysis. The proposed 

technique utilises Adaptive Camargo’s indexive Kuwahara 

filtering for image denoising to improve image quality.  

Camargo’s indexive Kuwahara filtering reduces adaptive 

noise in WCE images. The proposed filter is capable of 

utilising smoothing on WCE images to preserve edges. 

 
Fig. 2 Flow process of adaptive camargo’s indexive kuwahara filtering technique 

Figure 2 illustrates a block diagram of Adaptive 

Camargo’s indexive Kuwahara filtering for image noise 

artifacts removal in a given WCE image.  

Let us consider the number of inputs WCE images 

denoted as 𝐸𝐼1, 𝐸𝐼2, 𝐸𝐼3, … . 𝐸𝐼𝑛  taken from the dataset. For 

each input image, pixels are extracted and represented 

by𝑃1, 𝑃2, 𝑃3, … . 𝑃𝑚. Pixels are organised by filtering window 

size. It measured as, 

𝑅 = 2 ∗ 𝑘 + 1 (1) 

Where filtering window size is denoted as𝑅, 𝑘 denotes the 

radius of the filter. The four-square quadrants with size (+1) ∗
(𝑘 + 1) are used to arrange the pixels in the form of row ‘𝑖’ 
and column ‘𝑗’where, (1 ≤ 𝑖 ≤ ℎ) and (1 ≤ 𝑗 ≤ 𝑤). First, 

numbers of pixels are divided into four square quadrants, as 

given below, 

𝑞𝑚 = 𝑃 [(𝑖 − 𝑘, 𝑖 + 𝑘) ∗ (𝑗 − 𝑘, 𝑗 + 𝑘)]    (2) 

Where, 𝑞𝑚 denotes square quadrants, input pixels of 

images ‘𝑃’ partitioned four square quadrants such as𝑖 − 𝑘,𝑖 +
𝑘, 𝑗 − 𝑘 and 𝑗 + 𝑘 

These four-square quadrants are expressed as follows, 

𝑞1 = 𝑃(𝑖 − 𝑘, 𝑖) ∗ (𝑗 − 𝑘, 𝑗) (3) 

𝑞2 = 𝑃(𝑖 − 𝑘, 𝑖) ∗ (𝑗, 𝑗 + 𝑘)              (4) 

𝑞3 = 𝑃(𝑖, 𝑖 + 𝑘) ∗ (𝑗 − 𝑘, 𝑗)              (5) 

𝑞4 = 𝑃(𝑖, 𝑖 + 𝑘) ∗ (𝑗, 𝑗 + 𝑘)             (6) 

The layout of a 5 ∗ 5 Kuwahara kernel with four square 

quadrants is shown below. 

 

Input WCE 

image 

 

Arrange pixels in 

Filtering window 

 

Divide pixels into four square quadrants 

𝑞1 𝑞2 

 
𝑞3 

 
𝑞4 

 

 

Compute mean ‘𝑀’ 

 

Compute variance ‘𝑉’ 

Find quadrant ‘𝑞𝑚’ with minimum ‘𝑉’ 

 

Output denoised image pixels 



S. Bhuvaneswari & M. Sulthan Ibrahim / IJETT, 73(3), 540-553, 2025 

 

544 

 
Fig. 3 Layout of a 5*5 Kuwahara filter kernel 

Figure 3 illustrates the pixel arrangement or layout in 5 ∗
5 Kuwahara kernel window. In ascending order, pixels are 

positioned. The filtering window is partitioned into four 

quadrants 𝑞1, 𝑞2, 𝑞3 and 𝑞4. As shown in Figure 3, 𝐶𝑃 

indicates the center pixels of the kernel window. For each 

quadrant 𝑞, the mean (𝑀) and deviation (𝑀) is calculated. 

Then compute, the mean for each quadrant is computed as 

follows, 

𝑀(𝑞) =
1

𝑛 (𝑞)
∑ ∑ 𝑃𝑣𝑖𝑗

𝑤
𝑗=1

ℎ
𝑖=1  (7) 

Where 𝑀(𝑞) denotes a mean of pixels,  ∑ ∑ 𝑃𝑣𝑖𝑗
𝑤
𝑗=1

ℎ
𝑖=1  

denotes a sum of all the pixel values in the particular quadrant, 

the number of pixels denoted as 𝑛 (𝑞) at a particular quadrant. 

Center pixels ‘𝐶𝑃’ is computed depending on the mean value 

follows, 

𝐶𝑃 =
1

4
∑ 𝑀𝑡(𝑞)
4
𝑡=1  (8) 

Where, 𝑀𝑡(𝑞) denotes a mean of all four quadrants. After 

that, the deviation is computed for each quadrant based on the 

above estimated mean value by applying a Camargo index. 

Camargo’s index is a qualitative method to measure the 

dependency between pixel values and the mean of the 

particular quadrant. It is formulated as below, 

𝐶𝐼(𝑞) = 1 − ∑ ∑
|𝑃𝑣𝑖𝑗−𝑀(𝑞)|

𝑛 (𝑞)

𝑤
𝑗=1

ℎ
𝑖=1  (9) 

Where 𝐶𝐼(𝑞)indicates an output Camargo’s index 

function for a particular quadrant, 𝑃𝑣𝑖𝑗  denotes a pixel value 

in the particular quadrant,𝑀(𝑞) indicates the mean of pixels 

in the particular quadrant,  𝑛 (𝑞) indicates the number of 

pixels. From the analysis, the index function provides the 

output ranges from 0 to 1. After that, the minimum deviation 

among the four quadrants is identified through higher output 

ranges of Camargo’s index function. 

𝑌 = {
𝑚𝑖𝑛 𝑑𝑒𝑣  , 𝐶𝐼(𝑞) > 𝑇

𝑚𝑎𝑥 𝑑𝑒𝑣 , 𝐶𝐼(𝑞) < 𝑇
 (10) 

Where 𝑌 denotes a filtered output,min 𝑑𝑒𝑣denotes a 

minimum deviation, max 𝑑𝑒𝑣 denotes a maximum deviation 

𝑇  denotes a threshold,  𝐶𝐼(𝑞)indicates an output Camargo’s 

index function. From the analysis, the pixels with minimum 

deviation from the mean pixels are called normal pixels.  

Otherwise, the pixels with a maximum deviation from the 

mean are called noise pixels. The noise pixels are then 

removed from the filtering window through replacing the 

average of normal pixels within the respective quadrant. This 

denoising process effectively reduces MSE and enhances 

PSNR, resulting in enhanced image quality. 

Algorithm 1:    Adaptive Camargo’s indexive 

Kuwahara filtering technique 

Input: image database, Number of input WCE image 

𝐸𝐼1, 𝐸𝐼2, 𝐸𝐼3, … . 𝐸𝐼𝑛  

Output:  Preprocessed images  

Begin 
 

Step 1: Collect number of input WCE image 

𝐸𝐼1, 𝐸𝐼2, 𝐸𝐼3, … . 𝐸𝐼𝑛  from dataset 

Step 2: For each input image 𝐸𝐼𝑖  
Step 3: Extract the number of pixels  𝑃1, 𝑃2, 𝑃3, … . 𝑃𝑚 

Step 4: Organize the pixels in filtering window in 

ascending order 

Step 5:   Divide the image pixels into four quadrants using 

(3) (4) (5) (6).  

Step 6: For each quadrant 𝑞 

Step 7: Compute mean using (7)  

Step 8: Define center pixel value ‘𝐶𝑃’ using (8)  

Step 9: Compute the deviation using Camargo’s index (9)     

Step 10: if(𝐶𝐼(𝑞) > 𝑇)  then 

Step 11: Returns minimum deviation between the pixels 

and mean  

Step 12: else 

Step 13: Returns maximum deviation between the pixels 

and mean  

Step 14: end if 

Step 15: Select minimum deviation pixels and remove 

maximum deviation pixels 

Step 16: Replace noisy pixels with mean value of the 

normal pixel 

Step 17: End for 

Step 18: End for 

Step 19: Return (quality enhanced image)   
 

End 

 

Algorithm 1 describes the various steps involved in 

enhancing image quality by filtering out noise pixels. Lastly, 

a quality-improved image is attained with lesser MSE and 

higher PSNR. 

𝑞1 𝑞2 
  

𝑞3 𝑞4 
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3.3. Von Neumann Locality Image Segmentation 

Subsequent to image preprocessing, the CIKF-AISR 

method carries out segmentation to partition an image into 

multiple segments or regions based on certain pixel intensity 

characteristics. The goal is to group together pixels that belong 

to the same object or region while separating them from other 

objects or backgrounds. The CIKF-AISR technique utilises 

the Von Neumann locality segmentation method is employed 

to segment the image into different regions and extract the 

ROI with the help of Canberra distance measure between the 

image pixels. 

The Von Neumann locality segmentation is a concept 

used in image processing to define the set of spatial 

relationships between a set of neighboring pixels. It defines 

the connectivity of pixels in image processing tasks. This 

locality segmentation defines the notion of 4-connected pixels 

surrounding a central pixel. 

 𝑷𝒙,𝒚−𝟏  

𝑷𝒙−𝟏,𝒚 𝑷𝒙,𝒚 𝑷𝒙+𝟏,𝒚 

 𝑷𝒙,𝒚+𝟏  

Fig. 4 Von neumann pixels connectivity 

Figure 4 depicts a 4-connected neighborhood pixels 

method or Von Neumann pixels connectivity. First, the 

starting point is marked with a central pixel located in two-

dimensional spaces (𝑃𝑥,𝑦). The neighborhood connectivity is 

measured using the Canberra distance measure between the 

pixels. 

𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝐶𝐷(𝑃𝑥,𝑦 , 𝑃𝑁𝑁  )}  (11) 

𝑃𝑁𝑁 =

{
 

 
𝑃𝑥−1,𝑦
𝑃𝑥+1,𝑦
𝑃𝑥,𝑦−1
𝑃𝑥,𝑦+1}

 

 
  (12) 

𝐶𝐷(𝑃𝑥,𝑦 , 𝑃𝑁𝑁 ) =
(𝑃𝑥,𝑦−𝑃𝑁𝑁)

|𝑃𝑥,𝑦|+|𝑃𝑁𝑁|
 (13) 

Where ‘𝑆’ denotes a connectivity between the pixel 

intensity,arg𝑚𝑖𝑛 denotes an argument of the minimum 

function,   𝐶𝐷 denotes a Canberra distance between the two 

pixels 𝑃𝑥,𝑦   and  𝑃𝑁𝑁, 𝑃𝑥,𝑦   denotes a center pixel intensity, 

𝑃𝑁𝑁  denotes four another pixel intensities, |𝑃𝑥,𝑦  | denotes the 

absolute value of center pixel intensity, |𝑃𝑥,𝑦  | denotes the 

absolute value of the intensity of another pixel. Therefore, the 

minimum distance between pixel intensities is considered 

adjacency or neighborhood, facilitating the connection of 

similar regions. This approach is utilised in image 

segmentation, where regions with similar pixel intensities are 

grouped together. Subsequently, regions of interest (ROIs), 

such as infected regions, are extracted for ulcer detection. This 

process helps minimise the time complexity of ulcer detection 

when considering ROIs in the image. 

// Algorithm 2:  Von Neumann locality Image 

segmentation 

Input: Number of preprocessed 

images𝐸𝐼1, 𝐸𝐼2, 𝐸𝐼3, … . , 𝐸𝐼𝑛  

Output: Segmented image 

Begin 

 

Step 1: Collect the preprocessed 

images𝐸𝐼1, 𝐸𝐼2, 𝐸𝐼3, … . , 𝐸𝐼𝑛 ,  

Step 2: For every input image   

Step 3: Measure the degree of connectivity between the 

pixels using (11)  

Step 4: if𝑎𝑟𝑔𝑚𝑖𝑛{𝐶𝐷(𝑃𝑥,𝑦 , 𝑃𝑁𝑁  )}then 

Step 5: Find Adjacent pixels  

Step 6: end if 

Step 7: end for 

Step 8: Segment the ROI from image 

 

End 

 

Algorithm 2 outlines the steps involved in image 

segmentation to minimise the time complexity of ulcer 

detection. Initially, the algorithm collects a number of 

preprocessed images. For each image pixel, the algorithm 

measures the degree of connectivity between neighboring 

pixels using the Canberra distance metric. Subsequently, 

pixels with the minimum distance are connected to form the 

regions of interest (ROIs). Finally, the segmented images are 

obtained to improve the process of ulcer detection with 

minimal time. 

3.4. Affine Invariant Saliency Sliced Regression Method-

Based Feature Extraction 

In order to improve ulcer detection accuracy, affine 

invariant saliency sliced regression performs feature 

extraction. Sliced inverse regression is a machine learning 

technique for dimensionality reduction in multivariate 

statistics. The dimensionality reduction is the process used to 

reduce the representation of an image by extracting the 

significant features like, shape, color and textures. 

𝑍 = (𝜔1 
T𝐹1, 𝜔2 

T𝐹2, 𝜔3
T 𝐹3, 𝜀) (14) 

Where 𝑍  denotes a regression outcome, 𝜔1, 𝜔2, 𝜔3 are 

projection vectors to extract the three features, namely shape, 

 denotes a transpose, ‘ 𝐹1’ indicates a shape feature, 

‘𝐹2’indicates a color feature and texture feature‘𝐹3’, the 

symbol 𝜀 represents the error term. It represents the difference 

between the observed value and the value obtained by the 

regression model. 
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Affine invariant saliency refers to a measure of the 

importance of image regions that remain consistent under 

affine transformations. To detect affine-invariant regions, an 

ellipse detection approach is employed for shape detection. 

This approach parameterises regions using three parameters, 

namely scale (𝛼), axis ratio (𝛽), and orientation (𝜃).  

The scale parameter represents the size of the ellipse or 

image regions. It is defined as the average distance between 

the center and its boundary. Let us consider the center 

coordinates of object points (𝑢1, 𝑣1), and the boundary 

coordinates of objects(𝑢2, 𝑣2). The distance is computed from 

the center and the boundary as given below, 

𝐸𝐷 =   √(𝑢2 − 𝑢1)
2 + (𝑣2 − 𝑣1)

2  (15) 

Based on the distance measure ‘𝐸𝐷’, the closed contour 

is determined, which helps in identifying the shape within the 

image. The axis ratio parameter represents the ratio of the 

lengths of the major and minor axes. It is expressed as follows, 

𝛽 =
𝑎

𝑏
 (16) 

Where 𝑎 denotes a major axis, 𝑏 indicates a minor axis. 

Orientation (𝜃) parameter represents the rotation angle of 

the ellipse relative to the x-axis. 

𝜃 =  tan−1 (
(𝑢2−𝑢1)

(𝑣2−𝑣1)
) (17) 

Where, (𝑢1, 𝑣1) denotes a center coordinates of points, 

and (𝑢2, 𝑣2) denotes a boundary coordinates points. 

Quantised Color Histograms are employed for the 

distribution of pixel intensities. The first step is to convert the 

image from its original color space RGB (Red, Green, Blue) 

to a suitable color space HSV (Hue (𝐶𝐻), Saturation (𝐶𝑆),  
Value (𝐶𝑉)). The color conversion process is given below, 

𝐶𝐻 =  𝑐𝑜𝑠
−1 [

1

2
∗

[(𝑅−𝐺)+(𝑅−𝐵)]

√(𝑅−𝐺)2+(𝑅−𝐺)(𝐺−𝐵)
] (18) 

𝐶𝑆 = 1 − 3 ∗
1 

(𝑅+𝐺+𝐵)
[𝑎𝑟𝑔𝑚𝑖n(𝑅, 𝐺, 𝐵)]    (19) 

𝐶𝑉 =  
1 

3
∗ [(𝑅 + 𝐺 + 𝐵)] (20) 

Once the image is in the desired color space, a histogram 

is computed for each color channel. A histogram represents 

the frequency of occurrence of different color values within a 

specified range. If the color space is large, then it first divides 

into certain numbers of smaller intervals. Each of the intervals 

is called a bin. This process is called color quantisation. After 

the quantisation, the histogram is computed as follows, 

𝑟𝑖 = 𝑏1 ∪ 𝑏2 ∪ 𝑏3 … . .∪ 𝑏𝑘  (21) 

Where, 𝑟𝑖 size of input color space, 𝑏1, 𝑏2…𝑏𝑛 denotes a 

bins,  denotes a union symbol. After that, the histogram 

computed for each bin is given below, 

𝐻(𝑘) = 𝑐𝑜𝑢𝑛𝑡(𝑃𝑖  (𝑏𝑘)) (22) 

Where, 𝐻 (𝑘)represents the histogram, i.e., the frequency 

of occurrence of pixels in 𝑘𝑡ℎbin, 𝑐𝑜𝑢𝑛𝑡(𝑃𝑖  (𝑏𝑘))  denotes 

counts the number of pixels in the image that have an intensity 

value falling within the bin 𝑏𝑘 of the histogram. In this way, 

the color histogram of the image is obtained. 

Texture feature provides the spatial correlation between 

the pixels’ intensities within the ROI image. 

𝑇𝑓 =
1

𝑣𝑖∗ 𝑣𝑗
∑ ∑ (𝑃𝑖 − 𝜇𝑖)(𝑃𝑗 − 𝜇𝑗)𝑗𝑖  (23) 

Where’𝑇𝑓’ indicates the texture feature,𝑃𝑖  denotes a 

pixel,  𝑃𝑗 denotes a neighboring pixel,  𝜇𝑖 and 𝜇𝑗indicates a 

mean of the pixels and neighboring pixels,  𝑣𝑖 and 𝑣𝑗 indicates 

a deviation of the pixels and neighboring pixels. 

// Algorithm 3:  Feature extraction 

Input: segmented images ROI 

Output: extract the features  

Begin 

 

Step 1: For each segmented image   

Step 2: Apply regression to project the feature vector using 

(14) 

Step 3: Extract the shape features using (15) (16) (17) 

Step 4: Convert RGB into HSV using (18) (19) (20) 

Step 5: Divide color space into bins using 𝑟𝑖 = 𝑏1 ∪ 𝑏2 ∪
𝑏3… . .∪ 𝑏𝑘 

Step 6: Measure color histogram (22)   

Step 7: Extract texture feature using correlation using (23) 

Step 8: end for 

Step 9: Extract significant features 

 

End 

Algorithm 3, described above, outlines the feature 

extraction process for enhancing the accuracy of ulcer 

detection. Initially, the segmented ROI image serves as the 

input. Next, a regression function is utilised to project 

significant features from a high-dimensional space into a 

lower-dimensional space. Following this, affine invariant 

saliency is employed to extract shape features based on scale, 

axis ratio, and orientation. Additionally, color histograms are 

extracted to aid in accurate ulcer detection. Finally, texture 

features are extracted based on pixel correlation. The resulting 

features are subsequently utilised to enhance the accuracy of 

ulcer detection. 
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4. Experimental Setup 
The CIKF-AISR technique and two existing methods, 

deep CNN [1] and VAE-GAN [2] are executed with 

MATLAB. In order to perform the simulation, the Hyper-

Kvasir database is taken as of https://osf.io/mh9sj/. It 

comprises 110,079 WCE Images and 373 videos capturing 

anatomical landmarks, pathological results, and usual results. 

The dataset is divided into four separate elements. Among 

these parts, labeled images are used for experimental 

evaluation. From the labeled images, ulcer WCE images are 

collected, with a total of 851 available in the dataset.  

For experimental purposes, 50 to 500 images are selected 

from the dataset. The clinical implication of our proposed 

CIKF-AISR technique is split into three different proposed 

methods: image acquisition, preprocessing and feature 

extraction. Initially, a number of WCE images are gathered 

from the dataset. After the image acquisition, preprocessing is 

utilised to eliminate the noise and protect edges by applying 

an adaptive Camargo’s indexive Kuwahara filtering technique 

for image smoothing. This aids in minimum MSE and 

maximum PSNR. Subsequently, the segmentation and feature 

extraction process is determined to reduce the time complexity 

of ulcer detection. Von Neumann locality segmentation is 

employed to segment the image into different regions and 

extract the ROI with the help of Canberra distance measure 

between the image pixels. Then, dissimilar features are 

extracted using the Affine invariant saliency Sliced regression 

method. After extracting the features, ulcer detection is 

performed with better accuracy. 

5. Comparative Performance Analysis 
CIKF-AISR technique, along with two existing methods, 

deep CNN [1] VAE-GAN [2] compared. The performance 

analysis employs different metrics. The performance of each 

technique in terms of these metrics is illustrated through tables 

and graphical representations. 

5.1. Performance Analysis of Peak Signal to Noise Ratio 

The quality of the preprocessed WCE image was 

measured as PSNR by comparing it to the original image. SNR 

was determined to compute MSE among original and 

preprocessed WCE images. 

𝑃𝑆𝑁𝑅 = 10 ∗ log10 [
𝑃𝑚𝑥

2

𝐸𝑀𝑆
] (24) 

𝐸𝑀𝑆 = [𝑂𝑠𝑖𝑧𝑒 − 𝑃𝑟𝑠𝑖𝑧𝑒]
2 (25) 

Where the peak signal-to-noise ratio is ‘𝑃𝑆𝑁𝑅’, ‘𝑃𝑚𝑥’ 

represents maximum possible pixel value (255), 𝐸𝑀𝑆indicates 

a mean square error,𝑃𝑟𝑠𝑖𝑧𝑒  indicates preprocessed image size, 

𝑂𝑠𝑖𝑧𝑒  denotes the original image size.  

Table 1. PSNR 

WCE Image Size (KB) 
PSNR (dB) 

CIKF-AISR Deep CNN VAE-GAN 

228 54.15 46.54 50.06 

214.7 62.11 51.22 56.08 

171.3 58.58 49.04 54.15 

270.4 62.11 56.08 58.58 

233 60.17 52.86 57.50 

235.3 63.27 55.87 59.18 

244.7 57.50 51.22 54.15 

191.8 64.60 50.06 55.26 

266.8 60.89 53.16 57.24 

267.4 63.52 55.06 58.58 
 

 
Fig. 5 Performance results of peak signal-to-noise ratio 
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It is expressed in Decibels (dB). Three methods, namely 

the CIKF-AISR technique and deep CNN [1] VAE-GAN [2], 

are employed in Table 1. The average of ten comparison 

results shows that PSNR was enhanced using the CIKF-AISR 

technique by 17% and 8% when compared to [1, 2]. Figure 5 

depicts the performance outcomes of the peak signal-to-noise 

ratio with respect to different sizes of input WCE images 

measured in kilobytes (KB). The peak signal-to-noise ratio is 

measured using three methods, namely, the CIKF-AISR 

technique deep CNN [1] and VAE-GAN [2]. As shown in 

Figure 5, the CIKF-AISR technique provides improved 

performance in peak signal-to-noise ratio analysis. Let us 

consider the 228𝐾𝐵 size of WCE images taken from the 

dataset for computing the peak signal-to-noise ratio. By 

applying the CIKF-AISR technique, the performance of peak 

signal-to-noise ratio was observed to be54.15𝑑𝐵. Likewise, 

the peak signal-to-noise ratio performances were observed to 

be 46.54𝑑𝐵 and 50.06dB by applying methods [1, 2] 

respectively. For each method, various results were observed 

and compared. The average of ten comparison results shows 

that the peak signal-to-noise ratio was improved using the 

CIKF-AISR technique by 17% and 8% when compared to [1, 

2], respectively. This is due to Adaptive Camargo’s Indexive 

Kuwahara filtering technique, which enhances image quality 

by filtering out noise pixels from the WCE image. The image 

pixels are sorted into the kernel window, and Camargo’s index 

is applied to measure the deviation between the pixels. The 

pixels with the maximum deviation are recognised as noise 

and replaced by the average of other normal pixels. These 

processes enhance image quality and minimise mean square 

error.  

5.2. Performance Analysis of Ulcer Detection Accuracy 

It measured the number of WCE images precisely 

recognised. Accuracy mathematically formulated as given 

below, 

𝑈𝐷𝐴 =   (
𝑇𝑅𝑝+𝑇𝑅𝑛

𝑇𝑅𝑝+𝑇𝑅𝑛+𝐹𝐿𝑝+𝐹𝐿𝑛
) ∗ 100 (26) 

Where 𝑈𝐷𝐴 indicates ulcer detection accuracy, 

𝑇𝑅𝑝denotes the true positives, the true negative is𝑇𝑅𝑛, a false 

positive is𝐹𝐿𝑝, false negative𝐹𝐿𝑛 indicates false negative. The 

accuracy is measured in percentage (%). 

Table 2. Ulcer detection accuracy versus the number of WCE images 

Number of WCE Images 
Ulcer Detection Accuracy (%) 

CIKF-AISR Deep CNN VAE-GAN 

50 86 78 82 

100 88.6 80.36 85.32 

150 91.5 82.65 86.52 

200 92.12 83.6 85 

250 91.96 84.8 87.23 

300 91.85 85.12 88.24 

350 92.65 86.54 89.12 

400 91 85.12 87.54 

450 90.6 83.5 85.36 

500 89.36 82.56 84.52 

 

 
Fig. 6 Performance results of ulcer detection accuracy
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Figure 6 demonstrates a performance analysis of ulcer 

detection accuracy versus the number of WCE images 

collected from the dataset, ranging from 50 to 500. The 

number of WCE images are taken on the horizontal axis, and 

the ulcer detection accuracy was observed on the vertical axis. 

The graphically analysed result proves that the ulcer detection 

accuracy of the CIKF-AISR technique was higher than 

existing methods [1, 2]. Let us consider the first iteration 

involving 50 images; the ulcer detection accuracy using the 

CIKF-AISR technique was 86%. Subsequently, 78% and 82% 

of ulcer detection accuracy were observed by applying [1] and 

[2], respectively. Multiple runs were carried out for each 

method with various numbers of input images. The 

performance outcomes of CIKF-AISR were compared to the 

results of existing methods. Overall comparison outcomes 

prove that the CIKF-AISR method increased accuracy by 9% 

compared to [1] and 5% compared to [2]. This is because the 

CIKF-AISR uses an Affine invariant saliency Sliced 

regression method to extract features like shape, color, and 

textures from the segmented ROI image. With the extracted 

features, ulcer detection is performed, resulting in enhanced 

accuracy. 

5.3. Performance Analysis of Precision (Sensitivity) 

It measures the ratio of true positive detection of ulcer 

disease made by the model. Precision computed by, 

𝑃𝑟𝑒 =  
𝑇𝑅𝑝

𝑇𝑅𝑝+𝐹𝐿𝑝
 (27) 

Where 𝑃𝑟𝑒 denotes a precision, 𝑇𝑅𝑝 denotes a true 

positive that the images are correctly detected as ulcers, 

𝐹𝐿𝑝indicates a false positive refers to images incorrectly 

detected as ulcer. Table 2 illustrates a performance analysis of 

precision in ulcer detection. On average, the comparison of ten 

results reveals that the precision performance during ulcer 

detection was increased by 9% compared to deep CNN [1] and 

by 5% compared to VAE-GAN [2]. Figure 7 illustrates a 

performance analysis of precision in ulcer detection versus the 

number of WCE images taken in the range from 50 to 500. 

The graph depicts the number of inputs WCE images on the 

‘x’ axis and the precision performance observed on the ‘y’ 

axis. Among the three methods, CIKF-AISR demonstrates 

improved precision performance compared to the other two 

existing methods.

Table 3. Precision versus number of WCE images 

Number of WCE Images 
Precision (%) 

CIKF-AISR deep CNN VAE-GAN 

50 0.902 0.837 0.871 

100 0.912 0.845 0.875 

150 0.915 0.832 0.856 

200 0.908 0.855 0.866 

250 0.911 0.826 0.857 

300 0.895 0.835 0.858 

350 0.918 0.847 0.869 

400 0.907 0.833 0.875 

450 0.905 0.826 0.855 

500 0.903 0.818 0.852 

 

 
Fig. 7 Performance results of precision 
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This improvement is achieved due to the ut.ilisation of 

Affine Invariant Saliency for extracting shape features, 

generating color histograms based on quantisation methods, 

and extracting texture features based on the spatial correlation 

between pixels. These extracted features contribute to 

minimising false positives in ulcer detection and increasing 

the true positive rate. On average, the comparison of ten 

results reveals that the precision performance during ulcer 

detection was increased by 9% compared to deep CNN [1] and 

by 5% compared to VAE-GAN [2]. 

5.4. Performance Analysis of Ulcer Detection Time 

The overall time for ulcer detection from the given input 

WCE images is measured as the amount of time methods taken 

to identify ulcers. It is mathematically calculated as follows, 

𝑈𝐷𝑇 = ∑ 𝐸𝐼𝑖
𝑛
𝑖=1 ∗ 𝑇𝑖𝑚𝑒  [𝑈𝐷]  (28) 

Where, UDT indicates the ulcer detection time, 

Time  [UD] indicates a time for detection of a single image 

‘EIi’. The overall time is estimated in milliseconds (ms). 

Figure 8 illustrates the performance analysis of ulcer 

detection time using three methods, namely CIKF-AISR and 

deep CNN [1], VAE-GAN [2]. For each method, a simulation 

of 10 runs was performed with 500 distinct WCE images.  

From the above figure, increasing the number of WCE 

images, the time incurred for ulcer detection was also found to 

be increased. However, experiments were conducted for 50 

WCE images, and the time consumed for ulcer detection was 

24ms using CIKF-AISR, 30.5ms using [1] and 26.5ms using 

[2], respectively. From this analysis, the ulcer detection time 

using the CIKF-AISR technique was minimised by 15% and 

8% when compared to [1, 2] respectively.  

The reason behind this is to perform image segmentation 

and ROI extraction by applying Von Neumann locality image 

segmentation. For each pixel in the preprocessed images, the 

Canberra distance metric is applied to measure the degree of 

connectivity between neighboring pixels. Consequently, 

pixels with the minimum distance are connected to form 

regions. Finally, the region of interest is obtained for ulcer 

detection, minimising time complexity. 

Table 4. Ulcer detection time versus the number of WCE images 

 
Fig. 8 Performance results of ulcer detection time 
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Number of WCE images 
Ulcer Detection Time (ms) 

CIKF-AISR deep CNN VAE-GAN 

50 24 30.5 26.5 

100 27.3 32.5 30.8 

150 30.2 35.7 32.7 

200 32.5 38.9 35.9 

250 34.8 41.6 38.4 

300 37.4 43.5 40.2 

350 40.1 46.7 43.5 

400 43.5 48.2 45.8 

450 45.1 51.4 48.5 

500 48.5 53.6 51.7 
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5.5. Performance Analysis of Specificity 

It measures the ratio of the true positive rate and false 

negative rate of ulcer disease made by the model. Precision 

computed by, 

𝑆𝑝𝑒𝑐 =  
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
   (29) 

Where ‘𝑆𝑝𝑒𝑐’ denotes the specificity, 𝑇𝑃 is true positive 

rate (i.e., number of correctly classified positive samples by 

employing the corresponding method), false negative rate 

‘FN’ (i.e., number of incorrectly classified positive samples 

by the respective method as negative respectively. Figure 9 

describes the performance analysis of specificity in ulcer 

detection versus the number of WCE images taken in the range 

from 50 to 500. The graph depicts the number of input WCE 

images on the ‘x’ axis and the precision performance observed 

on the ‘y’ axis. Among the three methods, CIKF-AISR 

demonstrates improved specificity performance compared to 

the other two existing methods. The results of the proposed 

CIKF-AISR proposed method compared to specificity 

performance in ulcer detection were improved by 8% 

compared to deep CNN [1] and by 5% compared to VAE-

GAN [2]. 

Table 5. Specificity versus the number of WCE images 

 
Fig. 9 Performance results of specificity 

6. Discussion 
This study compares the proposed CIKF-AISR technique 

with the existing CNN [1] and VAE-GAN [2] using the 

Hyper-Kvasir dataset based on different parameters, such as 

peak signal-to-noise ratio, ulcer detection accuracy, precision 

(sensitivity), and specificity and ulcer detection time are 

obtained by ulcer detection. Initially, image preprocessing is 

utilised to enhance the image quality by reducing mean square 

error. The segmentation of the ROI is performed to minimise 

ulcer detection time. The geometric methods are employed to 

remove different features such as shape, color, and texture 

features from the WCE images. With the extracted feature 

vector, ulcers are detected with higher accuracy. The results 

confirm that the proposed CIKF-AISR technique improves the 

ulcer detection accuracy by 7% and 13%, enhances the 

precision and sensitivity by 7% and 6%, and reduces the ulcer 

detection time by 11% compared to the existing method [1, 2] 

using the Hyper-Kvasir dataset. 
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50 0.908 0.840 0.876 

100 0.917 0.849 0.880 

150 0.920 0.839 0.865 

200 0.910 0.863 0.870 

250 0.915 0.835 0.860 

300 0.905 0.840 0.863 

350 0.925 0.850 0.872 

400 0.913 0.839 0.877 

450 0.909 0.833 0.865 

500 0.915 0.825 0.867 
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7. Conclusion 
An ulcer is a familiar irregularity introduced within 

the GI region. The CIKF-AISR technique has been developed 

with higher precision using WCE images. The CIKF-AISR 

technique collects input WCE images. First, image quality 

improved when preprocessing was performed by minimising 

mean square error. The segmentation of the ROI is performed 

to minimise ulcer detection time. Following this, geometric 

methods are employed to extract different features. With the 

extracted feature vector, ulcers are detected with higher 

accuracy. Comprehensive performance analysis is conducted 

using different metrics. Comparative results prove that the 

presented CIKF-AISR technique achieves higher accuracy in 

ulcer detection. There has also been a notable improvement in 

PSNR and precision. Moreover, the ulcer detection time is 

also minimised compared to existing methods. The discussion 

of limitations in our proposed CIKF-AISR method using the 

Hyper-Kvasir dataset is taken from https://osf.io/mh9sj/. 

Presently, a research group is being performed in the field of 

GI image and video analysis, supporting future contributions 

in this area. This is not limited to using the dataset for 

comparisons and reproducibility of experiments but also for 

sharing new data in the future. In future, the performance 

metrics of the f1 score will focus on our proposed work. 
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