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Abstract - Anomaly detection is a prominent area of research in the field of deep learning. With the substantial increase in the 

number of CCTV located at various places, monitoring abnormal behavior is required to ensure safety and prevent the violation 

of rules at particular places. Anomaly detection in the classroom environment is important to ensure the safety of the students. 

Early detection of abnormal behavior will help educational institutions to take preventive measures against the students. Deep 

learning requires a huge amount of labeled data to achieve good accuracy. The data obtained from CCTV footage is currently 

unannotated, requiring manual annotation to facilitate the application of supervised deep learning architecture application. In 

addition, there is urge need for deep learning architecture trained on real-time datasets for anomaly detection in the classroom 

environment. To address this, we proposed a methodology based on unsupervised deep learning architecture by proposing a 

custom convolutional auto-encoder for anomaly detection in the classroom environment. Anomaly detection is accomplished 

through the utilization of a convolutional encoder, which evaluates the reconstruction loss between testing samples and training 

samples. This approach is effective for accurately identifying anomalies within the dataset. To implement this, similarity 

measures such as Mean Square Error (MSE), Kernel Density Estimation (KDE), and Structured Similarity Index Measure (SSIM) 

are applied. We evaluate the trained model on real-time data collected from the classroom environment with a comparative 

analysis of different similarity metrics. In this research work, we achieved 98% accuracy for anomaly detection in the classroom 

environment using the proposed methodology with similarity metrics SSIM. This research helps identify the role of unsupervised 

deep learning architecture and various similarity measures to identify anomalies in the classroom environment. 

Keywords - Anomaly detection, Auto encoders, Education, Structured Similarity Index Measure, Deep Learning. 

1. Introduction 

Abnormal event detection [1] has become an important 

area of research in machine vision and pattern recognition in 

recent years. The primary challenge lies in the fact that the 

scenarios depicting anomalous happenings are varied. 

Defining an interface that encompasses the limits of numerous 

potential abnormal occurrences is a challenging task. One 

approach is to define an abnormal event as an occurrence with 

a low probability compared to a normal event. This allows for 

statistical analysis of abnormal events that depart from 

expectations. Abnormal events are those that are not 

consistent with normal samples. Basically, two approaches are 

considered for abnormal event detection:  

• Supervised Learning: It requires a large amount of labeled 

data for abnormal samples, which is time-consuming and 

expensive.  

• Unsupervised learning: It requires a huge collection of 

normal samples. Testing samples that deviate from this 

normal are considered abnormal samples.  

Unsupervised Deep Learning Based Anomaly Detection 

is critically important in foundational machine learning 

research and practical industrial applications [2]. Various deep 

learning frameworks have been developed to address the 

challenges in unsupervised anomaly detection. Autoencoders, 

a key category of unsupervised deep learning architectures, 

are employed in anomaly detection, as noted in references [3, 

4]. The proposed deep unsupervised models for anomaly 

identification are based on specific assumptions that are highly 

effective in recognizing outliers [5]. It is vital to accurately 

distinguish the 'normal' and 'anomalous' regions within either 

the original or the latent feature space. The bulk of the data 

instances in the data set are classified as normal, in contrast to 

the other occurrences. The unsupervised anomaly detection 

technique assesses each data instance by determining an 

outlier score based on the underlying characteristics of the 

dataset, including distances and densities. This approach 

facilitates the identification of anomalies within the data [6]. 

The benefits of unsupervised deep anomaly detection 

techniques are as follows [7].  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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• Labelled data is not required for training the model.  

• Reduces data dimensions providing compressed 

representation of data.  

• Learning data representation of normal samples helps to 

detect outliers.  

Anomaly Detection in video generally consists of two 

phases [8].  

• Event representation: It entails gathering data from the 

video scene and extracting various features using an 

appropriate model depending on the type of anomaly.  

• Identification and detection of anomalies: Anomaly 

detection often involves using predefined rules that define 

the characteristics of a normal occurrence.  

Features that deviate from the model's learned pattern are 

considered anomalies or abnormal events. Auto encoders are 

state-of-the-art unsupervised deep learning architecture. 

Several variants of autoencoder are available as per [1]. One 

of the variants is the Convolutional Auto Encoder (CAE) [9]. 

The key component of the Convolutional Auto Encoder 

(CAE) [9] is the encoder and decoder, which consists of 

convolution layers as opposed to fully interconnected layers. 

The encoder consists of convolution layers, ReLU and max 

pooling layers to create a condensed representation from input 

images, while the decoder uses deconvolution layers and a 

ReLU layer for image reconstruction. CAE is effective in 

capturing spatial features from images for anomaly detection. 

Using auto encoders for anomaly detection follows the 

assumption that a trained autoencoder would learn the latent 

subspace of standard samples. Once trained, it would result in 

a low reconstruction error for standard samples and a high 

reconstruction error for anomalies. 

  Despite significant advancements in Artificial 

Intelligence (AI) and computer vision, the application of 

Abnormal Event Detection (AED) in educational 

environments remains substantially underexplored. 

Addressing the existing research gaps in this area is essential 

for ensuring the safety and well-being of students. i) Limited 

Contextual Understanding Current AED models 

predominantly utilize generic anomaly detection techniques, 

often neglecting the unique behavioral and environmental 

contexts found in the educational environment. The lack of 

contextualized datasets severely limits our ability to 

differentiate between normal variations in student behavior 

and genuinely abnormal events, such as violent outbursts or 

unauthorized access. ii) Scarcity of Robust Dataset:  There is 

a lack of publicly available, large-scale datasets specifically 

tailored to abnormal behavior in educational contexts. Most 

existing datasets are focused on general surveillance 

applications and do not adequately address scenarios unique 

to educational environments, including student gathering in 

the classroom, bullying and classroom disruptions. The 

methodology is proposed based on a convolutional 

autoencoder to handle this type of anomaly detection. This 

paper is structured as follows. Section 2 discusses the recent 

anomaly detection approaches using deep learning 

architectures and motivation, along with major contributions 

to the paper. Section 3 consists of the detailed architecture of 

the proposed methodology along with the anomaly detection 

process. In Section 4, we discussed experimental results 

stating the effectiveness of the proposed model and analysis 

with different scenarios of anomaly detection using various 

similarity metrics. Section 5 summarizes the main findings, 

contributions, limitations, and future scope. 

2. Related Work 
Numerous approaches have been developed for anomaly 

detection as per [10-12]. Hasan et al. [13] introduced a novel 

framework for convolutional auto-encoder to reconstruct 

complex scenes. This framework involved using 

reconstruction costs to effectively identify anomalies within 

the reconstructed scenes. Similarly, Zhou et al. [14] proposed 

the utilization of spatio-temporal Convolutional Neural 

Networks (CNNs) to simultaneously capture and analyze joint 

appearance and motion characteristics comprehensively. 

Furthermore, Sultani et al. [15] presented an advanced 

approach by integrating deep neural networks with multiple 

instances learning techniques to accurately classify real-world 

anomalies such as accidents, explosions, fights, abuse, and 

arson. This fusion enabled a more comprehensive and nuanced 

understanding of various anomaly types, enhancing 

classification accuracy and real-world applicability. In [17], 

the method for detecting anomalies uses two approaches to 

understand pattern appearances and their motions. The first 

approach uses an auto-encoder architecture to reconstruct the 

appearance, while the second approach employs a U-Net 

structure to predict immediate motion from a video frame. 

Additionally, a patch-based method is used to estimate 

anomaly scores, reducing the impact of model output noise. 

The VidAnomalyNet [18] deep learning architecture is 

designed to identify anomalies in the video using novel CNN. 

Furthermore, [18] proposed a deep learning architecture 

based on separable 2D convolution to reduce computation. 

Transfer learning is applied to benchmark datasets for 

anomaly detection. A deep learning approach using a hybrid 

architecture consisting of the convolutional autoencoder and 

sequence-to-sequence long short-term memory auto encoder 

has been proposed in [19] to monitor surveillance videos 

continuously and detect anomalies. The proposed 

unsupervised learning method leverages a one-class 

classification framework to identify video anomalies 

effectively. This approach aims to enhance the accuracy and 

reliability of anomaly detection in various video contexts. The 

model's effectiveness has been demonstrated on benchmarked 

anomaly detection datasets, achieving significant results 

regarding equal error rate, area under the curve, and time 

required for detection [19]. In [20], anomaly detection based 

on the auto-encoder and deep Generative adversarial network 
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has been proposed for the images. In addition, finding the 

optimal threshold for anomaly detection is also discussed. The 

taxonomy of autoencoders plays an important role, along with 

its applications in various fields, as per the literature [21]. 

However, the limitations of the auto-encoder variants are also 

discussed in [21]. Several hyperparameters contribute to the 

accuracy of the autoencoder in detecting anomalies. One of 

the important hyperparameters is the loss function, which is 

used to measure the reconstruction error [21].  

2.1. Motivation 

Implementing anomaly detection systems in classrooms 

and on campus is driven by the critical need to prevent 

violence, such as grouping students or fights, before they 

escalate. In educational settings, where large groups of 

students congregate, manually monitoring and assessing 

crowd behaviour can be challenging. Anomaly detection 

technologies can automatically identify irregular patterns, 

such as sudden clustering of students or heightened agitation, 

which may signal the onset of violence. By detecting these 

anomalies early, school authorities can promptly intervene, 

thereby preventing potential harm and maintaining a safe and 

conducive environment for learning. This proactive approach 

ensures students' physical well-being and fosters a sense of 

security and trust within the school community. 

In existing literature discussed in related work, anomaly 

detection is carried out using various approaches. However, 

the parameter computation is very high, and the data set used 

is in a constraint environment. There is a need for custom 

lightweight, unsupervised deep learning architecture for 

anomaly detection in the classroom environment. The 

proposed research aims to leverage deep learning techniques, 

particularly convolutional auto encoders, to uncover 

anomalies or outliers in data. The focus of this study is to 

identify unexpected patterns within the context of students in 

a classroom environment. Unsupervised deep learning 

architecture has the potential to be valuable in identifying 

pupils who may be disinterested, absent, or exhibiting 

abnormal behavior, allowing for prompt interventions to 

enhance the educational setting. 

2.2. Contribution 

• Collection of real-time data samples consisting of normal 

and abnormal behavior of the students in the classroom. 

• Defining a custom lightweight convolutional auto 

encoder for identifying anomalies in the classroom. 

• Analysis of anomaly detection using similarity metrics 

viz. mean square error, kernel density estimation, 

structured similarity index measure.    

3. Proposed Methodology 
We propose using a custom unsupervised deep learning 

architecture to detect anomalies in the classroom environment. 

We use convolutional auto encoders, a type of artificial neural 

network, to recognize irregularities. These auto-encoders 

condense input data and then reconstruct it. Exposing the 

autoencoders to regular data, they learn to identify typical 

patterns and characteristics. The primary objective of 

minimizing reconstruction error is to reduce the disparity 

between the original data and its reconstructed representation. 

When the model is used on new data, any substantial 

divergence from the learned patterns (referred to as a high 

reconstruction error) signals an abnormality. Convolutional 

autoencoders are particularly valuable for identifying unusual 

occurrences or anomalies in different contexts, such as 

identifying fraudulent activities, safeguarding network 

security, and detecting system faults when abnormal instances 

significantly deviate from regular patterns. In addition, the 

proposed methodology emphasizes lightweight deep learning 

architecture. Deployment of trained deep learning architecture 

to alert anomaly detection on resource constraint devices 

requires a trained model with less parameter computation.  

In an educational environment, an anomaly is considered 

when the students sit in a crowd / or stand in a crowd during 

classroom activities. This behavior is considered abnormal 

during the teaching hours in the classroom. In the proposed 

methodology, we have collected CCTV footage of the 

classroom environment of various scenarios, as listed in Table 

1.  

The dataset is stated as EDUANOM. The dataset samples 

used for training the model are stated in Figure 1. 

Unsupervised deep learning architecture is emphasized in the 

research work. Due to this, the dataset samples consist of 

students studying in the classroom environment, such as 

normal behavior. The dataset samples are collected from 

various classroom environments to cover various viewpoints. 

The diverse dataset is collected by considering different 

students, different seating arrangements, and empty 

classrooms during holidays or when there are no scheduled 

classes. In addition, data samples are recorded during different 

time zones, such as sunlight in the classroom and normal 

daylight conditions. 

                          Table 1. Details of the dataset 

Data Description Details 

Category of videos 

considered for normal 

behavior 

Proper sitting in the 

classroom with different 

viewpoints of the 

classroom 

The total length of the 

video 
36 minutes of total video 

Length of each video 7-11 seconds 

Number of students 

appearing in the video 
5-40 

Data Source 
CCTV footage of the 

classroom 

Number of frames 

considered for the training 
445 

Resolution 460 x700 
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3.1. Steps of the Proposed Methodology 

The key components of the proposed methodology are the 

encoder and decoder, along with the reconstruction loss 

measure. The encoder part consists of two convolutional 

layers with varying 3x3 filter sizes and varying numbers of 

filters. Each convolutional layer is followed by a pooling layer 

that is responsible for reducing the dimension of the feature 

map. The encoder plays a role in creating the latent 

representation of all the training samples, as stated in Figure 

1. The latent representation, also known as a latent space or 

latent vector, is a fundamental block of auto encoders. In an 

auto encoder’s encoder-decoder architecture, the network's 

encoder component condenses the input data into a condensed 

form called the latent representation. This representation 

effectively captures the incoming data's fundamental 

characteristics and underlying structures by reducing its 

dimensionality. The aim is to retain the most pertinent 

information while discarding unnecessary details, allowing for 

tasks such as data compression, dimensionality reduction, and 

anomaly identification. The condensed representation serves 

as a succinct summary of the input data, enabling the decoder 

to reconstruct the original data from this latent representation. 

The architecture of the custom convolutional autoencoder is 

provided in Figure 2. The hyperparameter details are stated in 

Table 2 concise format. The feature benefits unsupervised 

learning. The decoder is an essential component in the design 

of an auto encoder since it is responsible for reconstructing the 

input data using the latent representation produced by the 

encoder. To accomplish this, the decoder frequently utilizes 

up-sampling layers. Upsampling layers, also known as 

"deconvolutional" layers [22], enlarge the spatial dimensions 

of the input data by employing techniques such as nearest-

neighbour interpolation or bilinear interpolation [22], as stated 

in Figure 2. This methodology resembles the inverse of down-

sampling performed by the pooling layers within the encoder, 

allowing the model to efficiently and progressively 

reconstruct feature maps to align with the dimensions of the 

original input size. The upsampling method enables the 

decoder to improve and augment the smaller elements, 

rebuilding the output with higher resolution based on the 

lower-dimensional latent representation. Through attentive 

layer design, the decoder can precisely reconstruct the input 

data, guaranteeing that the auto-encoder successfully acquires 

and expresses the vital features of the data in the latent space.  

Table 2. Hyper parameters of the proposed methodology 

Hyper Parameters Value 

Epochs 40 

Batch size 20 

Optimiser Rmsprop 

Filter size in Convolution Layer 3 x 3 

Filter Size in Max Pooling Layer 2 x 2 

Stride in the Convolution layer 1 

Stride in Max Pooling Layer 2 

Filter size in the upsampling layer 2 x 2 

Activation Function Sigmoid, ReLU 
 

 
Fig. 1 Samples of the EDUANOM dataset 
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Fig. 2 Architecture of the proposed methodology 
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Fig. 3 Training Phase of the proposed Methodology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Testing Phase of the proposed Methodology     
                                                                                                               

3.2. Working of the Training Phase and Testing Phase 

As indicated in Figures 3 and 4, the steps of the proposed 

methodology for the training and testing phase using custom 

CAE are depicted. The key component is the encoder and 

decoder. The encoder creates the latent representation of all 

the training samples. The training process is iterated to 

minimize the reconstruction loss calculated for the original 

training samples and reconstructed samples. This is done to 

prevent the loss of information in the reconstructed image as 

the output of the decoder. The hyperparameters used for 

training the proposed methodology are stated in Table 2. In 

the testing phase of the proposed methodology, the testing 

sample is first applied to the proposed custom convolutional 

autoencoder. This will create the reconstructed image with a 

compressed representation of the image. The reconstructed 

image is compared with training data samples with three 

similarity metrics. The anomaly sample has a high 

reconstruction error as compared to the original data samples. 

The testing samples with low reconstruction error are 

considered normal behavior. However, the threshold is set for 

reconstruction error in the testing phase. Anomaly is 

considered if the reconstruction error exceeds the threshold. 

Data samples of training set consisting of normal class 

 

Autoencoder construct the compressed version of the training data samples 

 

Latent representation 

 

Decoder reconstruct the latent representation 

 

Validate the output of  decoder with reconstruction loss 

 

Iterate the training process to minimize reconstruction loss 

 

Construct the latent representation of the testing samples 

 

Compute the reconstruction loss using similarity metrics with trained samples 

 

Evaluate the reconstruction loss with similarity metrics KDE, SSIM and MSE 

 

Analyze the correctly classified anomaly testing samples 
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           Table 3. Architectural details of the proposed methodology 

Type of Layer 
(Height, Width, 

Channels) 

Parameter 

Computation  
Input Layer (460,700,1) - 

Encoder 

Convolution 

Layer 
(460, 700, 16) 160 

Max Pooling 

Layer 
(230, 350, 16) - 

Convolution 

Layer 
(230, 350, 8) 1160 

Max Pooling 

Layer 
(115, 175, 8) - 

Decoder 

Up sampling 

Layer 
(230, 350, 8) - 

Convolutional 

Layer 
(230, 350, 30) 584 

Up sampling 

Layer 
(460, 700, 30) - 

Convolutional 

Layer 
(460, 700, 1) 2190  

Total Parameter Computation 4365 

 

Table 3 indicates the dimension of the feature map 

produced by each layer, parameter computation, and the 

number of feature maps or channels. The number of feature 

maps depends on the filters used in each layer. Three 

similarity measures are used in the proposed methodology to 

evaluate the reconstructed data. i) Mean Squared Error [23] ii) 

Kernel Density Estimation [24, 25] iii) Structured Similarity 

Index measure [26, 27] discussed in the next section. Auto 

encoders are neural network structures utilized for 

unsupervised learning, primarily focusing on compressing and 

rebuilding input data. 

3.3. Similarity Metrics  

The Mean Squared Error (MSE) [23] is an essential 

metric for evaluating the difference between the original input 

𝑌𝑖   and its reconstructed output 𝑃𝑖  by the autoencoder, as stated 

in Equation (1). This measure offers valuable insights into the 

accuracy of the reconstruction processes. ith data sample 

represents the total number of samples ranging from 1 to n. 

More precisely, it quantifies the average square deviation 

between the pixel or feature values in the original data and 

their corresponding values in the reconstruction. A reduced 

MSE implies that the auto encoder successfully captures the 

fundamental characteristics of the input data and recreates 

them with minimum loss. This demonstrates a more precise 

and efficient encoding-decoding process. Therefore, by 

monitoring the MSE, one may adjust the settings of the 

autoencoder and evaluate its effectiveness in tasks such as 

reducing dimensions, removing noise, or detecting anomalies. 

MSE =
1

𝑛
∑ (𝑌𝑖 − 𝑃𝑖)2𝑖=𝑛

𝑖=1
 (1) 

Kernel Density Estimation (KDE) [24, 25] is a method 

employed in auto encoders to approximate the probability 

density function of the data inside the latent space. An auto 

encoder is a model that compresses input into a lower-

dimensional representation using an encoder. The encoded 

characteristics may then be modelled using KDE in the latent 

space. In anomaly detection, Kernel Density Estimation 

Kernel Density Estimation (KDE) serves as an effective 

method for estimating the probability density function of 

normally distributed data points. Data points that are located 

in regions of low density can be identified as anomalies. The 

calculation of a single kernel data point is stated by Equation 

(2). x represents the neighbouring point, xi represents data 

points, and h represents the bandwidth. i represents the total 

number of samples ranging from 1 to n. The parameter h 

defines the sample window utilized for estimating the 

probability of a new data point. This specification is crucial 

for ensuring accurate assessments in our analytical processes. 

K(x) = 
1

h √2π
  e−0.5(

x−xi
h

)
2

 (2)                      

 Calculation of Kernel density estimation of data points 

by summing the kernel of different data points is stated in 

Equation (3). n indicates the total number of data points. 

𝐾𝐷𝐸𝑗  = 
1

𝑛
  ∑  i=n

i=1
1

ℎ √2𝜋
  𝑒−0.5(

𝑥−𝑥𝑖
ℎ

)
2

 (3) 

 

The kernel density estimation of training samples, which 

consists of data points consisting of the normal behaviour of 

students, lies within the same range. However, data samples 

consisting of anomaly behaviour lie within different ranges, as 

stated in Figure 5(a) indicates the training data samples have 

data distribution consisting of neighbouring density scores and 

diverse density scores. Figure 5(c) indicates the testing 

samples consisting of density scores with dissimilar density 

scores compared to the training samples.  

 
(a) 
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(b) 

 
(c) 

Fig. 5 Kernel Density Estimation, (a) KDE for training data samples, (b) KDE for data samples having the same range of density scores, (c) KDE 

density scores for testing samples. 

In addition, Figure 5(b) indicates the total number of 

samples with the same density score from training data, which 

states that the features are similar to those of a particular 

collection of samples. In addition, Figure 5(c) depicts normal 

samples with high-density scores and anomaly samples with 

low-density scores. The Structured Similarity Index Measure 

(SSIM) [26, 27] is commonly used to assess picture quality.  

It is often employed in the context of convolutional auto 

encoders to evaluate how closely the reconstructed outputs 

resemble the original inputs. The SSIM metric extracts three 

important key features from an image: Contrast, Luminance, 

and Structure. The Luminance Function is characterized by 

the mathematical representation l (x, y), wherein μ denotes the 

mean of a specified image, while x and y refer to the two 

images being compared. Constants C1 and C2 are usually set 

to C1=0.01 and C2=0.03 as stated in Equation (4)  

l(x, y) = 
2𝜇𝑥  𝜇𝑦   + 𝐶1     

𝜇𝑥
2 + 𝜇𝑦

2  +𝐶2
 (4)  

The contrast function c(x, y) is a mathematical function 

that defines the difference or distinction between two elements 

x and y. It is used to quantify the degree of variation or 

dissimilarity between the elements, often in the context of 

images or signals, as stated in Equation (5). σ denotes the 

standard deviation of a given image. x and y are the two 

images being compared.                                                                                           
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c(x,y) = 
2𝜎𝑥  𝜎𝑦   + 𝐶1     

𝜎𝑥
2 + 𝜎𝑦

2 +𝐶2
 (5)     

The structure is defined by the function s(x, y) as stated 

in Equation (6). σ indicates the standard deviation of a given 

image. The two images being compared are x and y. 

s(x,y) = 
𝜎𝑥𝑦 + 𝐶2

𝜎𝑥𝜎𝑦 + 𝐶2
 (6) 

𝜎𝑥𝑦 =
1

𝑁−1
∑ (𝑥𝑖 − 𝜇𝑥) (𝑦𝑖 − 𝜇𝑦)

  𝑖=𝑁

𝑖=1
 (7) 

   The SSIM metric calculates the structural similarity of two 

pictures by considering factors such as brightness, contrast, 

and structural information. This provides a more thorough 

evaluation of image quality compared to just comparing 

individual pixels. When employed in auto encoders, SSIM can 

operate as both a loss function and an evaluation measure to 

guarantee that the reconstruction preserves crucial structural 

elements and visual consistency. This is especially 

advantageous in applications like image denoising, inpainting, 

or super-resolution, where maintaining the perceived quality 

of the rebuilt pictures is vital. By prioritizing the optimization 

for the Structural Similarity Index (SSIM), auto encoders may 

more effectively capture and replicate the delicate nuances of 

the input data, resulting in reconstructions of superior quality. 

where α > 0, β > 0, γ > 0 denote the relative importance of 

each of the metrics as stated [26, 27] in Equation (8). 

  SSIM (x, y) = [ l(x,y)]α  .  [ c(x,y)]β   .  [ s(x,y)]γ (8) 

4. Experimental Results and Analysis 
We evaluated the auto encoder’s performance using three 

metrics: Mean Squared Error (MSE) [23], Kernel Density 

Estimation (KDE) [24, 25], and the Structured Similarity 

Index Measure (SSIM) [26, 27]. The details regarding the 

accuracy of the trained model are stated in Figure 8. The 

experimental results are evaluated using the confusion matrix, 

as stated in Figure 7. The results of MSE are stated in Figure 

6. which quantifies the difference in the values of each 

corresponding pixel between the sample and the reference 

images. The figure x-axis indicates the number of testing 

samples, and the y-axis represents the means square error. A 

higher mean square error value indicates that the testing image 

is anomalous.  

A total of 24 testing samples are considered, out of which 

the ground truth of the first 14 samples is an anomaly, whereas 

the remaining are normal. Only a few samples are correctly 

identified as an anomaly based on the MSE, as depicted in 

Figure 6. The Mean Squared Error (MSE) [23] fails to account 

for the contextual or structural relationships between data 

points, as the autoencoder output is a blurred reconstruction. 

In scenarios where the interplay of features is significant, MSE 

may inadequately maintain these relationships, potentially 

resulting in reconstructions close to numerical value but 

contextually or structurally inaccurate. Figure 6 indicates the 

mean square error for 24 testing samples consisting of the first 

10 samples of anomaly and the remaining 14 normal samples. 

Higher MSE indicates the pattern deviates from normal 

samples, indicating anomaly. Low MSE indicates the pattern 

matches the normal samples. However, few samples are 

misclassified as normal samples.  

From Table 4, it can be depicted that SSIM gives good 

accuracy as compared to other metrics for anomaly detection. 

For anomalous images, the SSIM will be lower. The Structural 

Similarity Index (SSIM) metric extracts 3 key features from 

an image: Luminance, Contrast, and Structure. The 

information present in the testing images contains different 

luminance, contrast, and structure as compared to the normal 

images trained with the dataset. Due to these characteristics, 

this metric is ideal for anomaly detection. Once the density 

estimate is computed, Kernel Density estimation can be used 

to identify anomalies by evaluating the density of new or 

existing data points.  

Data points that fall in regions of very low density are 

considered anomalies, as they are unlikely under the estimated 

distribution of the normal data. A threshold can be set to 

determine which points are classified as anomalies. Points 

with a density below this threshold are flagged as potential 

outliers.  

However, selecting the appropriate threshold for density is 

still challenging. KDE is beneficial in situations where the 

data does not follow a specific parametric distribution, making 

it a flexible tool for anomaly detection in various domains. For 

our research work, KDE needs to yield reasonable accuracy. 

We have analysed the application of various metrics used for 

an autoencoder for anomaly detection by conducting 

experiments on real-time datasets summarised further.  

 
Fig. 6 Mean Squared Error for testing samples concerning training 

samples 
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Table 4. Evaluation of the testing samples on the proposed methodology 

 

  

Ground Truth Anomaly Normal 

Similarity Metric SSIM KDE MSE SSIM KDE MSE 

Predicted Class label Anomaly Anomaly Anomaly Normal Abnormal Normal 

 

  

Ground Truth Anomaly Normal 

Similarity Metric SSIM KDE MSE SSIM KDE MSE 

Predicted Class label Anomaly Normal Normal Anomaly Anomaly Anomaly 

 

  

Ground Truth Normal Normal 

Similarity Metric SSIM KDE MSE SSIM KDE MSE 

Predicted Class label Normal Abnormal Normal Normal Abnormal Normal 

 

This study utilized an auto-encoder model to identify 

anomalies, especially detecting a student standing in a crowd 

during a theoretical lesson. The proposed methodology is 

evaluated on the collected dataset, as no such dataset is 

available publicly. Three main similarity measures are applied 

to identify anomalies: Kernel Density Estimation (KDE), 

Mean Square Error (MSE) reconstruction, and Structural 

Similarity Index Measure (SSIM). The following is an 

examination of the outcomes derived from these 

measurements. The students standing had lower density 

readings, which distinguished them as outliers and uniforms 

across several test conditions. The KDE metric demonstrated 

a high level of sensitivity towards slight variations in the latent 

space. The autoencoder successfully reconstructed non-

standing students with low MSE values, showing that the 

model represented the basic organization of the group well. 
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TP TN 

5 5 

9 5 

FP TN 

(a)  Mean Squared Error 

TP TN 

6 4 

12 2 

FP TN 

   (b)  Kernel Density Estimation 

TP TN 

10 0 

1 13 

FP TN 

(c) SSIM 
TP: Anomaly Detection TN: Normal Class 

Fig. 7 Confusion matrix of the experimental results for anomaly 

However, the MSE values for the standing student were 

much higher, indicating difficulty in accurately reproducing 

this specific event. For blurred reconstruction, among the 

average students in the group, the SSIM values were high, 

indicating that the recreated pictures maintained similar 

structural features to the original ones.  

However, the SSIM values for the standing students were 

lower compared to those of the seated students, showing a 

noticeable structural difference in the reconstructions. This 

suggests that the auto encoder did not preserve the standing 

student's posture well, as indicated by the SSIM measure. 

SSIM was effective in identifying precise structural 

abnormalities that may have been missed by MSE.  

The lower SSIM values observed for the standing student 

highlight the importance of structural information in detecting 

abnormalities, making SSIM a valuable addition for 

evaluation compared to MSE and KDE for evaluating 

structural integrity. Each of the three measures, namely KDE, 

MSE, and SSIM, had a distinct role in identifying the anomaly 

(the standing student) in the crowd during a theoretical lecture.  

The SSIM metric offered valuable information on 

structural variations, accurately capturing noticeable 

discrepancies. Using these parameters, the auto-encoder-

based anomaly detection system successfully identified the 

standing student as an abnormality. This demonstrates the 

model's capacity to recognize both subtle and substantial 

anomalies in a classroom environment.    

Figure 9 states the number of testing samples correctly 

predicted using the proposed methodology using various 

similarity metrics. It depicts that anomaly is correctly 

predicted for given testing samples using SSIM.  

The proposed methodology is evaluated in a classroom 

environment that is not considered for training samples, 

students gathering in different crowds, and the normal 

arrangement of students in various classroom environments.  

The testing samples related to anomalies in the classroom 

environment were collected from the web. However, it is 

considered abnormal for certain examples where students sit 

in groups on the staircase. This sample is evaluated to test the 

generalisation ability of the proposed methodology. 

In addition, the proposed methodology is also evaluated 

on the UCSD [29] Anomaly Dataset. UCSD [29] dataset 

consists of samples of educational institution pedestrian 

walkways. The crowd's density in the walkways varied, 

ranging from sparse to very crowded. Under normal 

conditions, the video captures only pedestrians.  

Abnormal events are defined as either the presence of 

non-pedestrian entities in the walkways or unusual pedestrian 

motion patterns. The proposed model is specifically designed 

for the scenario of the classroom environment, not the outdoor 

one.  

However, it performed well on the UCSD Dataset for 

identifying abnormal behavior cases, such as non-pedestrian 

entities and increased crowd density, as stated in Table 5. It 

also states the accuracy of the UCSD [29] dataset using 

various techniques recently proposed by various researchers. 
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Fig. 8 Comparison of similarity metrics vs accuracy on the EDUANOM dataset 

 
Fig. 9 Comparison of similarity metrics vs number of samples correctly predicted for EDUANOM 

Table 5. Comparison of accuracy on the dataset 

Methodology Dataset Accuracy 

Two Stream Convolutional Neural Network [28] UCSD [29] 84% 

AED using GAN [30] UCSD [29] 95% 

Proposed UCSD [29] 90% 

Proposed EDUANOM 95% 

5. Discussion 
A new approach has been developed to detect abnormal 

behaviour of students in the classroom using a custom 

Convolutional Autoencoder (CAE) combined with various 

similarity metrics. The gathering of students in the classroom 

environment is considered abnormal, especially in cases 

where social distancing needs to be ensured. This innovative 

method delivers exceptional accuracy and efficiency. Here are 

the key points: i) Role of the Convolutional Autoencoder: The 

CAE is essential for identifying patterns and simplifying 

complex data. It effectively recognizes intricate behaviours in 

students and classroom activities. The CAE confidently 

distinguishes between normal and abnormal patterns by 

reconstructing input data, with significant reconstruction 

errors indicating potential anomalies. ii) Significance of 

Similarity Metrics: Similarity metrics are crucial for 
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measuring original and reconstructed data differences. Key 

metrics include: - Mean Squared Error (MSE): This metric 

highlights pixel-level differences, with higher MSE values 

indicating potential anomalies. - Structural Similarity Index 

(SSIM): This metric effectively focuses on visual 

characteristics, making it superior at detecting subtle 

behavioural changes. The CAE operates efficiently without 

needing extensive labelled data, cutting down on preparation 

time. Quick calculations ensure real-time results, which are 

critical for immediate responses. Challenges remain in fine-

tuning the CAE to avoid overfitting and selecting the most 

effective metrics for various anomalies. Future research will 

focus on adaptive metrics and hybrid models that will further 

enhance the detection of temporal changes. By leveraging a 

custom CAE and diverse similarity metrics, there is a strong 

potential to significantly improve the detection of unusual 

activities in schools significantly, ensuring swift identification 

and response to any issues. 

6. Conclusion 
Anomaly detection is a challenging area in the field of 

computer vision and deep learning. In this research work, we 

have collected a real-time data set consisting of samples of 

students in the crowd in the classroom environment. In this 

paper, the proposed methodology is based on unsupervised 

deep learning architecture based on a custom convolutional 

autoencoder. Anomaly is detected based on similarity metrics 

such as Kernel Density Estimation (KDE), Mean Square Error 

(MSE), and Structure Similarity Index measure (SSIM). We 

achieved good accuracy with SSIM as compared to KDE and 

MSE. SSIM is effective in identifying structural 

abnormalities. Our proposed model has less parameter 

computation and good accuracy. This research work is useful 

in applications for anomaly detection in the classroom 

environment based on unsupervised deep learning 

architecture. It requires various data samples for normal 

behavior. However, the limitation of the auto encoder is the 

tendency of the model to overfit, especially when subtle 

variations within normal data are incorrectly flagged as 

anomalies. This overfitting can cause the auto encoder to yield 

elevated reconstruction errors for minor deviations, 

diminishing its overall effectiveness. Another key limitation is 

the challenge of determining an optimal threshold to separate 

normal and anomalous data. Setting this threshold often 

demands substantial tuning and expert knowledge, as there 

can be overlap in the reconstruction error distributions of 

normal and anomalous data. In future work, the proposed 

work can be extended by including a huge number of data 

samples consisting of various normal actions for students or 

educational institutions. The robustness and scalability of the 

anomaly detection system allow the experiment with variants 

of Autoencoder with varied and diverse datasets for the 

education environment. This will help improve the system's 

generalization ability for anomaly detection. In addition, a 

hybrid approach can be explored to extract temporal features 

for anomaly detection. 
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