
International Journal of Engineering Trends and Technology Volume 73 Issue 3, 436-447, March 2025

ISSN: 2231-5381/ https://doi.org/10.14445/22315381/IJETT-V73I3P130 © 2025 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

 Southern Indian Language Braille Image Conversion

Systems

G. Gayathri Devi

Department of Computer Science, Shrimathi Devkunvar Nanalal Bhatt Vaishnav College for Women, Chennai, India.

Corresponding Author : mail2gg@yahoo.co.in

Received: 21 August 2024 Revised: 14 November 2024 Accepted: 25 February 2025 Published: 28 March 2025

Abstract - The Southern Indian Language Braille Image Conversion System (SILBCS) is designed to enhance accessibility for

visually impaired individuals by converting Braille script into readable text in Southern Indian languages. By focusing on the

recognition and interpretation of Braille Image characters specific to regional languages such as Tamil, Telugu, Kannada, and

Malayalam, SILBCS offers a tailored solution to address the linguistic diversity prevalent in the area. This system inputs Braille

image documents and generates corresponding text files in languages such as Tamil, Telugu, Kannada, and Malayalam. The

converted text can be further utilized with speech synthesizers to enable audio output. Through experimentation with datasets

containing Braille documents in these languages, the proposed method demonstrated promising performance in accurately

converting Braille images into their respective languages, thus facilitating improved access to information and literature for the

visually impaired community in Southern India.

Keywords - Braille conversion, Kannada Braille, Malayalam Braille, Southern Indian Language, Tamil Braille, Telugu Braille.

1. Introduction
People with vision problems use Braille, which is credited

to Louis Braille and has been widely discussed by (Barry

1981) [1] and (Jan Mennens et al. 1993, 1994) [2-4]. Braille is

a tactile writing system. Those with low vision or blindness

can read thanks to its raised dots, which are detectable by

touch. As seen in Figure 1, the system is divided into Braille

cells, each of which has a configuration of six raised dots

grouped in two rows of three. Six dots can be used to create

sixty-four (2^6) different combinations, which can be used to

represent numerals, punctuation, alphabet letters, and even

whole sentences in a single cell.

Fig. 1 Braille cell

The Dravidian languages, primarily spoken in Tamil

Nadu, Kerala, Telangana, Andhra Pradesh, and Karnataka,

extend their influence to regions such as Bangladesh, Bhutan,

Mauritius, Sri Lanka, certain parts of Pakistan, Burma,

southern Afghanistan, Nepal, Malaysia, Africa, Indonesia, and

Singapore. Tamil, Kannada, Telugu, and Malayalam boast the

highest number of speakers among these languages. Braille

serves as an essential tool enabling individuals worldwide to

access information in their native languages, thus facilitating

the universal spread of knowledge.

Known as Indian Braille or Bharati Braille [5, 6], it is

widely used as a Braille alphabet system for writing Indian

languages. Initially, eleven distinct Braille scripts were

utilized, each tailored to different languages in various parts

of India. However, Bharati Braille has become a standardized

script nationwide and has been adopted by countries such as

Bangladesh, Sri Lanka, and Nepal. Figures 2, 3, 4, and 5

visually depict the Braille alphabets for Tamil, Telugu,

Malayalam, and Kannada, respectively.

2. Existing System
The (Andrean et al. 2023) [7] research focused on the

preprocessing techniques to convert text images to braille

Unicode. The research uses preprocessing techniques such as

binarization, denoising, and skew correction, and then Optical

Character Recognition (OCR) is applied. This paper came up

with the results of the preprocessing methods and compared

those results to results from raw images. The work emphasized

the importance of preprocessing procedures in enhancing text

images for braille translation. The proposed research (Sana

Shokat et al., 2022) [8] adopted Support Vector (SVM),

Decision Trees (DT), and K-Nearest Neighbor (KNN)

algorithms, combined with Reconstruction Independent

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mail2gg@yahoo.co.in

G. Gayathri Devi / IJETT, 73(3), 436-447, 2025

437

Component Analysis (RICA) and Principal Component

Analysis (PCA) based feature extraction methods for

converting Braille image to English.

The work found that the RICA-based feature extraction

method worked well compared to PCA, the Random Forest

(RF) algorithm, and Sequential methods. Evaluation metrics

included True Positive Rate (TPR), True Negative Rate

(TNR), Positive Predictive Value (PPV), Negative Predictive

Value (NPV), False Positive Rate (FPR), Total Accuracy,

Area Under the Receiver Operating Curve (AUC), and F1-

Score. The robustness of the proposed method was confirmed

by conducting statistical tests.

The paper (F. S. Apu et al., 2021) [9] proposed a novel

Braille translating device capable of converting text and voice

commands into Braille characters for visually challenged

people. The device features a single refreshable Braille cell to

display the Braille signs. The device is operable through

smartphones and computers using Bluetooth and USB

connections, allowing educators to connect and manage up to

30 Braille translating devices simultaneously to teach a class

of 30 students.

The aim of the research (Felix et al., 2020) [10] was to

develop a software system capable of converting Braille code

into multilingual text and voice outputs using Machine

Learning (ML) and Artificial Intelligence (AI) algorithms.

The research faced challenges in the variability in Braille

writing styles and solved those problems by using ML and AI

models that can adapt to these differences. The research found

a comprehensive solution that efficiently enhanced the

accessibility of written content for the visually challenged and

enabled them to benefit from both text and voice outputs in

multiple languages.

Fig. 2 Tamil braille alphabets sheet

Fig. 3 Telugu braille alphabets sheet

Fig. 4 Malayalam braille alphabets sheet

Fig. 5 Kannada braille alphabets sheet

G. Gayathri Devi / IJETT, 73(3), 436-447, 2025

438

This work (Purvang Patel et al., 2021) [11] addresses the

real-time teaching needs of visually challenged students to

learn alongside their peer group. The system used a webcam,

Tesseract OCR, an Arduino board, and solenoids as the output

mechanism for blind students to feel the Braille characters.

The algorithm extracts the text using Tesseract OCR and

converts the recognized text into Braille. The recognized

Braille is created using an Arduino board, providing a real-

time learning experience for visually impaired students.

The work (Ghazanfar et al., 2023) [12] introduced an

innovative IoT-based system to translate Arabic and English

Braille into audio. The device captures Braille images with an

embedded camera and employs a transfer learning-based

Convolutional Neural Network (CNN) for recognition. This

system helps visually impaired individuals and other people to

read Braille.

The research (Shokat et al.,2020) [13] reviewed various

user input schemes such as touch-screen mechanisms like

Braille Touch, Braille Enter, and Edge Braille, highlighting

their reliance on location-specific inputs, which could be

challenging for the user to convert Braille to natural language.

The study evaluated the efficiency, accuracy, and usability

techniques to minimize user burden.

The article (Changjian Li et al., 2021) [14] focused on

implementing a character-based braille translator using

ResNet models (ResNet-18, ResNet-34, ResNet-50) and a

word-based braille detector using Adaptive Bezier-Curve

Network (ABCNet). The research paper presented a

comparative evaluation of ABCNet’s performance. The

approach leverages deep learning techniques to enhance

braille recognition and detection, aiming to improve

accessibility and usability for visually impaired individuals.

The research article (Englebretson R (2023) [15]

presented an approach for recognizing Braille as a distinct and

valuable writing system deserving of scholarly attention. The

article provides a historical overview of Braille’s

development, focusing on its unique formal characteristics as

a writing system to familiarize sighted print readers and

encourage further exploration. It critiques biases that prioritize

print-centric assumptions, highlighting the negative impact on

braille users and research directions.

The paper (Jennis Oliviya et al., 2023) [16] introduced a

method to bridge communication gaps between sighted and

visually impaired individuals using Tamil braille. The

research proposed a transfer learning approach employing the

VGG16 network to convert Tamil braille images into text with

a high accuracy of 95.65%. The research (Ian Herrara et al.,

2024) [17] describes the development of a Braille printer that

converts voice input into Braille, utilizing an old ink printer as

a base. The innovation aims to improve communication and

education for deafblind individuals by enabling real-time

voice-to-Braille translation. The process involves designing a

prototype, modifying the printer mechanism, and

implementing a control system.

By repurposing materials and leveraging existing printer

infrastructure, the approach not only enhances accessibility

but also promotes cost-effectiveness and sustainability. The

work (Urooj Beg 2017) [18] converted scanned Hindi

documents into Braille using image processing. The method

generates a Hindi database through segmentation, matches

letters with Principal Component Analysis (PCA), and

converts them into Braille. Text documents are successfully

translated, marking progress in Braille communication

research.

The proposed research (Ganga Gudi et al., 2023) [19]

highlighted the challenges visually impaired individuals face

in accessing information compared to sighted people,

stressing the importance of developing a system for

converting natural language text into Braille. The paper

proposed strategic mapping solutions using Natural Language

Processing (NLP) techniques to optimize multilingual text

translation into Braille characters.

The work (B. Meneses-Claudio et al. 2020) [20]

addressed the educational problem faced by visually

challenged persons in Peru by developing a Braille translation

system. This system captures Braille images and translates

them into Peruvian vocabulary using image processing

techniques. By identifying and interpreting the Braille points,

the approach seeks to improve understanding and accessibility

for both students and educators involved in teaching Braille.

3. Proposed Methodology
 The current research presents a conversion system from

southern Indian Braille languages to their respective spoken

languages. The datasets primarily comprised Braille

documents in Southern Indian languages, including Tamil,

Telugu, Kannada, and Malayalam. These were sourced from

educational institutions catering to visually impaired students,

Braille libraries housing regional literature, and custom-

created scanned samples of Braille texts using high-resolution

scanners. The collected datasets included textbooks, literary

works, and worksheets, ensuring a mix of content types.

 The research encompasses the following phases:

• Braille Image Preprocessing,

• Row-Column Segmentation,

• Conversion of Braille Cell to a number string

• Creation of Mapping Table

• Conversion of the number string to its Unicode

representation

• Conversion of the Unicode representation to editable text

file.

The workflow of the proposed system is shown in Figure 6.

G. Gayathri Devi / IJETT, 73(3), 436-447, 2025

439

Fig. 6 Workflow of proposed system

3.1. Braille Image Preprocessing

 Preprocess the Braille image to enhance its quality and

prepare it for subsequent processing stages, such as

segmentation and character recognition. Preprocessing a

Braille image involves the following steps. The first step is to

load the image from the file system into memory. The image

is then converted to grayscale to simplify processing and

reduce computational load.

Gaussian blurring is then applied to the grayscale image

to smooth it out, reducing noise and eliminating small details

that may interfere with subsequent processing steps. Next, a

thresholding technique is employed to segment the image into

binary form, effectively separating the foreground (containing

Braille dots) from the background.

After thresholding, morphological operations are applied.

Dilation is performed to connect nearby Braille dots and

ensure they form coherent structures, while erosion is utilized

to remove any remaining small noise and separate merged

dots. Contour detection is then employed to identify individual

Braille dots or cells within the processed image. Following

contour detection, contours that are too small or too large to

be considered Braille dots are filtered out.

Bounding boxes are then extracted around the remaining

contours to isolate individual Braille cells. Subsequently, the

image is cropped using these bounding boxes to focus on each

Braille cell individually. Finally, the cropped Braille cells are

resized to a standard size for uniformity in further processing.

The preprocessed Braille cell images are then saved for further

analysis or processing in subsequent steps.

3.1.1. Braille Image Preprocessing Algorithm

 Let I be the input Braille image.

1. Read the Image: I

2. Convert to Grayscale: Igray

=cvtColor(I,COLOR_BGR2GRAY)

3. Apply Gaussian Blurring: Iblurred=GaussianBlur(Igray

,(5,5),0)

4. Thresholding: Ithresh=threshold(Iblurred,0,255,

THRESH_BINARY_INV + THRESH_OTSU)

5. Morphological Operations:

a. Dilation: Idilation=dilate (Ithresh,kernel,iterations=1)

b. Erosion: Ierosion=erode(Idilation,kernel,iterations=1)

6. Contour Detection: contours _=findContours(Ierosion ,

RETR_EXTERNAL, CHAIN_APPROX_SIMPLE)

7. Filter Contours:

filtered_contours={cnt∣cntifcontourArea(cnt)>50and

contourArea(cnt)<1000}

8. Bounding Box Extraction and Image Cropping:

 preprocessed_images=[] for contour in filtered_contours:

• (x,y,w,h)=boundingRect(contour)

• braille_cell=I[y:y+h,x:x+w]

• preprocessed_images.append(braille_cell)

9. The output is the preprocessed image

A Tamil Braille Script image (Figure 7) is taken as Input,

and after (Preprocess), Step 1 of the image is preprocessed

and converted to a black and white image (Figure 8).

Fig. 7 Input - Tamil braille image

Braille

Document

Image

Pre-Processing
Segmentation

of Braille Cells

Feature Extraction

(Identifying the

location of dots)

Editable

Text File

Mapping

Algorithm Mapping

Database

G. Gayathri Devi / IJETT, 73(3), 436-447, 2025

440

Fig. 8 Preprocessed -Tamil braille image

3.2. Row-Column Segmentation

 Row-column segmentation of a preprocessed Braille

document involves identifying and separating the individual

rows and columns of Braille cells in the document. The

procedure begins by identifying the rows of Braille cells. This

is typically achieved by analyzing the vertical distribution of

Braille cells within the document. Each row is delineated by

the spaces between consecutive rows of cells. Once the rows

are identified, the document is segmented horizontally into

distinct rows. Following row segmentation, the individual

columns within each row are identified. This is accomplished

by analyzing the horizontal distribution of Braille cells within

each row. Each column is separated by the spaces between

consecutive columns of cells. The document is then

segmented vertically into separate columns within each row.

The resulting segmented document consists of individual cells

organized in rows and columns, ready for further processing

or analysis.

3.2.1. Braille Image Row-Column Segmentation Algorithm

 Let D be the preprocessed Braille document.

Identify Rows:

 Call RowSegmentFunc()

Let R represent the set of rows identified within D

• Each row ri is defined by its starting and ending

coordinates: (xstart,ystart,xend,yend

• Segment Rows:

The segmented row SRi is obtained by slicing D horizontally

using the coordinates (xstart,ystart,xend,yend).

Identify Columns Within Each Row:

Call ColumnSegmentFunc()

• Let Cn represent the set of columns identified within row

ri.

• Each column cj within row ri is defined by its starting and

ending coordinates: (xstart,ystart,xend,yend).

Segment Columns within Each Row:

• The segmented column SCri,j is obtained by slicing SRi

horizontally using the coordinates xstart,ystart,xend,yend).

Output

The resulting segmented document SD consists of

individual Braille cells organized in rows and columns:

SD = {SR1, SR2,...,SRn}

Where SRi represents a segmented row containing segmented

columns:

SRi = {SCi1, SCi2,...,SCi,m}

RowSegmentFunc() - An Algorithm to Identify Rows in a

Braille Image

 The algorithm for identifying rows in a Braille image,

represented, operates as follows: First, the preprocessed

Braille image, denoted as D. An empty list called rows, is set

to hold identified rows. The algorithm then iterates over each

row in the image, computing the count of non-zero pixels in

the row. If this count exceeds a predetermined threshold τ, the

algorithm identifies the row as part of a Braille row segment.

If the start of the current row segment is not yet defined,

it sets the start_row coordinate to the current row index. It

updates the end_row coordinate with each subsequent row. If

a row segment is completed, the algorithm appends the tuple

(start_row, end_row) to the rows list and resets the start_row

and end_row coordinates. After looping through all rows, the

algorithm checks if the last row segment is still open and

appends it to the rows list if needed. Finally, the algorithm

outputs the list of identified rows.

RowSegemntFunc()

Let D be the preprocessed Braille image.

1. Set rows [] as an empty list.

2. Scan Over Images:

• For each row y from 0 to height(D)−1:

• Compute the number of non-zero pixels in the row, and

count(y).

• If count(y) is greater than or equal to a threshold τ:

• If the start of the current row segment start_row is not set:

• Set start_rowstart_row to y.

• Update the end of the current row segment end_row to y.

Else if

• start_rowstart_row is set:

 Append the tuple (start_row,end_row) to rows R.

 Reset start_row_row and end_row to −1.

3. Return the list rows containing the identified rows R

In mathematical notation:

Rows = {(start_row,end_row)  ∣  start_row,

end_row∈N,start_row≤end_row}

where:

• height(I) represents the height of the image I,

• count(y) denotes the number of non-zero pixels in row y,

• τ is the threshold for considering a row as part of a Braille

row segment,

G. Gayathri Devi / IJETT, 73(3), 436-447, 2025

441

• start_rowstart_row and end_rowend_row are the start and

end coordinates of a row segment, initialized to −1 at the

beginning

 Braille image is segmented into rows after the row

segmentation algorithm is shown in Figure 9.

ColumnSegmentFunc() - An Algorithm to Identify Columns

in a Braille Row Image

 The algorithm to identify columns for segmentation in a

Braille row image. The algorithm for identifying columns in a

preprocessed Braille row image, denoted as R, follows a

structured process. It begins by initializing an empty list

named columns to hold the identified columns. Then, it

iterates through each column in the image, calculating the

count of non-zero pixels. If this count surpasses or equals a

predefined threshold τ, the column is recognized as part of a

Braille column segment. If the start of the current column

segment hasn’t been set, the start_column coordinate is

established as the current column index. As it progresses

through the columns, it updates the end_column coordinate

accordingly. Upon completing a column segment, the tuple

(start_column, end_column) is appended to the columns list

and resets the start_column and end_column coordinates.

After examining all columns, the algorithm verifies if the last

column segment is still open and includes it in the columns list

if necessary. Finally, it outputs the list columns containing the

identified columns.

ColSegmentFunc()

Let R be the preprocessed Braille row image.

1. Set columns as an empty list.

2. Loop Over Columns:

• For each column x from 0 to width(R)−1:

• Compute the number of non-zero pixels in the column,

count(x).

• If count(x) is greater than or equal to a threshold τ:

• If the start of the current column segment start_column is

not set:

 Set start_column to x.

 Update the end of the current column segment and set

end_column to x.

• Else if

start_column is set

3. Append the tuple (start_column1, end_column1)

(start_column1, end_column1) to columns.

Output: Return the list of columns containing the identified

columns.

In mathematical notation:

columns={(start_column,end_column) ∣ start_column,end_co

lumn∈N,start_column≤end_column}

where:

• width(R) represents the width of the image R,

• count(x) denotes the number of non-zero pixels in column

x,

• τ is the threshold for considering a column as part of a

Braille column segment,

• start_columnstart_column and end_columnend_column

are the start and end coordinates of a column segment,

initialized to −1 at the beginning. Adjust the threshold

value according to the specific characteristics of your

Braille row images. The Braille Row image is segmented

into columns after the Column segmentation algorithm is

shown in Figure 10.

Fig. 9 Row projection-Tamil braille image

Fig. 10 Column projection-Tamil braille image

3.3. Conversion of Braille Cell to a Number String

To convert a Braille image pattern containing 6 dots into

a numerical sequence, begin by identifying the positions of the

dots within the pattern. Assign numerical values to each dot

position, with the top left dot being labeled as 1, the middle

left as 2, the bottom left as 3, the top right as 4, the middle

right as 5, and the bottom right as 6.

The algorithm involves preprocessing the image to obtain

a binary representation, detecting contours representing dots,

filtering the contours, calculating centroids, and classifying

dot positions. Once the dot positions are determined, map

these positions to a numerical sequence. This sequence

represents the numerical order of the dots within the Braille

pattern.

G. Gayathri Devi / IJETT, 73(3), 436-447, 2025

442

Finally, the resulting numerical sequence is output, which

provides a structured representation of the Braille image

pattern in a numerical format. The algorithm is to convert a

Braille image pattern consisting of 6 dots to a numerical

sequence.

3.3.1. Dot Detection and Representation Algorithm

 Input: Braille Character image pattern P consisting of a

maximum of 6 dots.

1. Determine Dot Positions: Identify the positions of the

dots within the Braille image pattern. Assign a numerical

value to each dot position as follows:

Dot 1: Top left as 1

Dot 2: Middle left as 2

Dot 3: Bottom left as 3

Dot 4: Top right as 4

Dot 5: Middle right as 5

Dot 6: Bottom right as 6

2. Use contour detection algorithms to identify individual

dots within the binary image:

 dot_contours=detect_contours(Pbinary)

a. Filter the contours based on area and aspect ratio:

filtered_contours=filter_contours(dot_contours)

b. For each remaining contour ci in filtered_contours:

• Calculate the centroidi to determine the approximate

position of the dot: centroidi=calculate_centroid(ci)

• Classify the dot based on its relative position within the

grid: dot_positioni=classify_dot_position(centroidi)

3. Map Dot Pattern to Numerical Sequence: Use the

positions of the dots to map the Braille image pattern to a

numerical sequence.

Output: Return the numerical sequence representing the

Braille image pattern, i.e., the positions of the dots identified

in the Braille image pattern: dot_positions = [dot_position1,

dot_position2, ..., dot_positionn]

This algorithm takes a Braille image pattern P as input,

identifies the positions of the dots within the pattern, maps

these positions to a numerical sequence, and returns the

numerical sequence representing the Braille image pattern.

3.3.2. Representation of Braille Image as the Location of Dots

Each Braille Cell image is taken and represented by

numbers from one through six, as shown in Figure 6. For

example, the dots of the first Braille cell image in Figure 11 of

Figure 10 are 1236.

Fig. 11 Braille character image

In this step, all the Braille cell images are represented by

the location of dots. If there is no dot in the Braille column

image, it is considered a space, and a string number sequence

of 0020 is added (Unicode of space is 0020). A number

sequence of 000A (Unicode of Space) is added when it reaches

the end of the row. The number sequence of Fig 10 is shown

below.

1236 345 1235 3456 0020 134 345 13456 24 1235 134 4

0020 14 1256 12356 1236 0020 123 134 4 14 26 13456 4 2345

136 0020 0020 0020 0020 0020 0020 0020 0020 0020

000A 1345 345 1235 3456 0020 1345 134 4 1234 24 0020

1345 23456 13 4 13 24 56 4 12456 345 0020 56 26 56 4 12456

26 2345 24 1235 4 0020 0020 0020 0020 000A 1234 1256

1235 3456 0020 1234 1346 12456 4 13 136 23456 134 4 0020

1236 34 2345 4 2345 136 1234 4 0020 1234 136 12456 134

26 346 4 13 136 134 4 0020 000A2345 135 1235 3456 134 4

0020 1345 345 23456 4 23456 13 4 0020 13 56 345 13 4 13

3456 4 23456 16 56 4 0020 2345 135 12356 35 1345 345 56

4 000A

3.4. Creation of Mapping Table

 Creating a database to map number strings representing

the presence of dot positions to their corresponding language

Unicode representations involves several steps. Firstly, define

the database schema, typically consisting of a table with

columns for the number string and its associated Unicode

representation. Next, establish a connection to the database.

Then, each mapping, associating the number string of the

Braille character with its corresponding Tamil, Telugu,

Malayalam, and Kannada Unicode representation, is inserted

into the database table. Finally, close the connection to the

database. This algorithmic process ensures the creation of a

structured database containing mappings that facilitate easy

retrieval of Unicode representations based on input number

strings.

3.4.1. Mapping Table Algorithm

Let number_string_unicode_mapping be a dictionary

containing mappings between number strings and their

Unicode representations in Tamil, Telugu, Malayalam and

Kannada.

Create a Mapping look-up Table 1, comprising five fields,

holds entries for number strings alongside their corresponding

Unicode representations of Consonant, Vowel, and

Consonant-Vowel Combined Characters in Tamil, Telugu,

Malayalam, and Kannada language.

1. Connect to the database named

number_string_unicode_mapping.

2. Create a table named unicode_mapping with columns

number_string of Braille

3. Character and unicode_representation for Tamil, Telugu,

Malayalam, Kannada

4. For each (number_string, Unicode representations) r in

number string Unicode mapping

• Insert the values into the unicode_mapping table.

5. Close the database connection.

G. Gayathri Devi / IJETT, 73(3), 436-447, 2025

443

Table 1. Mapping table (braille character image number string associated with its corresponding tamil, telugu, malayalam and kannada unicode)

Braille

dot

Position

Tamil

Unicode

Telugu

Unicode

Malayalam

Unicode

Kannada

Unicode

Braille

dot

Position

Tamil

Unicode

Telugu

Unicode

Malayalam

Unicode

Kannada

Unicode

1 0B85 0C05 0D05 0C85 145 NULL 0C26 0D26 0CA6

345 0B86 0C06 0D06 0C86 2346 NULL 0C27 0D27 0CA7

24 0B87 0C07 0D07 0C87 1345 0BA8 0C28 0D28 0CA8

35 0B88 0C08 0D08 0C88 1234 0BAA 0C2A 0D2A 0CAA

125 0B89 0C09 0D09 0C89 235 NULL 0C2B 0D2B 0CAB

1256 0B8A 0C0A 0D0A 0C8A 12 NULL 0C2C 0D2C 0CAC

26 0B8E 0C0E 0D0E 0C8E 45 NULL 0C2D 0D2D 0CAD

16 0B8F 0C0F 0D0F 0C8F 134 0BAE 0C2E 0D2E 0CAE

34 0B90 0C10 0D10 0C90 13456 0BAF 0C2F 0D2F 0CAF

1346 0B92 0C12 0D12 0C92 1235 0BB0 0C30 0D30 0CB0

135 0B93 0C13 0D13 0C93 12456 0BB1 0C31 0D31 0CB1

246 0B94 0C14 0D14 0C94 123 0BB2 0C32 0D32 0CB2

4 0BCD 0C4D 0D4D 0CCD 456 0BB3 0C33 0D33 0CB3

6 0B83 0C03 0D03 0C83 1236 0BB5 0C35 0D35 0CB5

13 0B95 0C15 0D15 0C95 12356 0BB4 NULL 0D34 NULL

46 NULL 0C16 0D16 0C96 56 0BA9 0C02 0D02 0C82

1245 NULL 0C17 0D17 0C97 146 0BB6 0C36 0D36 0C36

126 NULL 0C18 0D18 0C98 12346 0BB7 0C37 0D37 0C37

346 0B99 0C19 0D19 0C99 234 0BB8 0C38 0D38 0C38

14 0B9A 0C1A 0D1A 0C9A 125 0BB9 0C39 0D39 0C39

16 NULL 0C1B 0D1B 0C9B 345 0BBE 0C3E 0D3E 0CBE

245 0B9C 0C1C 0D1C 0C9C 24 0BBF 0C3F 0D3F 0CBF

356 NULL 0C1D 0D1D 0C9D 35 0BC0 0C40 0D40 0CC0

25 0B9E 0C1E 0D1E 0C9E 136 0BC1 0C41 0D41 0CC1

23456 0B9F 0C1F 0D1F 0C9F 1256 0BC2 0C42 0D42 0CC2

2456 NULL 0C20 0D20 0CA0 26 0BC6 0C46 0D46 0CC6

1246 NULL 0C21 0D21 0CA1 16 0BC7 0C47 0D47 0CC7

123456 NULL 0C22 0D22 0CA2 34 0BC8 0C48 0D48 0CC8

3456 0BA3 0C23 0D23 0CA3 1346 0BCA 0C4A 0D4A 0CCA

2345 0BA4 0C24 0D24 0CA4 135 0BCB 0C4B 0D4B 0CCB

1456 NULL 0C25 0D25 0CA5 246 0BCC 0C4C 0D4C 0CCC

3.5. Conversion of the Number String to its Unicode

Representation

 Let:

• B be the set of number string of Braille character

• U be the set of Unicode characters for the Southern Indian

language.

• M be the mapping function that maps each Braille

character to its corresponding Unicode character.

The conversion algorithm can be represented as follows:

3.5.1. Conversion of Number String to Unicode Algorithm

a. Define M as a mapping function that maps each Braille

number string bi to its corresponding Unicode character ui.:

M: B→U

b. The algorithm iterates through each Braille number string

and applies the mapping function M to obtain the

corresponding Unicode character.

• Let SU be the resulting Unicode string obtained after

conversion.

• The conversion algorithm can be represented as:

• SU=(M(b1),M(b2),...,M(bn))

• where M(bi) represents the Unicode character obtained by

applying the mapping function to the ith Braille character.

To convert a number string of Braille characters

representing a Southern Indian language into its Unicode

representation, a mapping database (Table 1) is utilized. This

database consists of a collection of mappings that associate

each number string of Braille characters with its

corresponding Unicode character for the specific Southern

Indian language. The algorithm begins by taking the input

Braille number string and iterating through each character.

The algorithm consults the mapping database for each Braille

character encountered to find its corresponding Unicode

character. This Unicode character is then appended to a

resulting Unicode string. Once all Braille characters have been

G. Gayathri Devi / IJETT, 73(3), 436-447, 2025

444

processed in this manner, the algorithm produces the final

Unicode representation of the input Braille string for the

Southern Indian language. This method ensures an accurate

and efficient conversion process, enabling seamless

translation between Braille and Unicode representations. In

this procedure, the previous output is associated with the

Unicode representation of the chosen language, which is done

using Table 1. Each number string is read sequentially and

matched with its corresponding Unicode value. For instance,

in Figure 10 (Tamil Braille Image), the initial braille character

of the number string ‘1236’ is examined in Table 1, and found

its Tamil Unicode as ‘0BB5’. This mapping procedure

continues until the end of the file is reached. The Unicode

representation of Figure 10 is given below.

0BB5 0BBE 0BB0 0BA3 0020 0BAE 0BBE 0BAF 0BBF

0BB0 0BAE 0BCD 0020 0B9A 0BC2 0BB4 0BB5 0020

0BB2 0BAE 0BCD 0B9A 0BC6 0BAF 0BCD 0BA4 0BC1

0020 000A 0BA8 0BBE 0BB0 0BA3 0020 0BA8 0BAE

0BCD 0BAA 0BBF 0020 0BA8 0B9F 0B95 0BCD 0B95

0BBF 0BA9 0BCD 0BB1 0BBE 0020 0BA9 0BC6 0BA9

0BCD 0BB1 0BC6 0BA4 0BBF 0BB0 0BCD 0020 000A

0BAA 0BC2 0BB0 0BA3 0020 0BAA 0BCA 0BB1 0BCD

0B95 0BC1 0B9F 0BAE 0BCD 0020 0BB5 0BC8 0BA4

0BCD 0BA4 0BC1 0BAA 0BCD 0020 0BAA 0BC1 0BB1

0BAE 0BC6 0B99 0BCD 0B95 0BC1 0BAE 0BCD 0020

000A 0BA4 0BCB 0BB0 0BA3 0BAE 0BCD 0020 0BA8

0BBE 0B9F 0BCD 0B9F 0B95 0BCD 0020 0B95 0BA9

0BBE 0B95 0BCD 0B95 0BA3 0BCD 0B9F 0BC7 0BA9

0BCD 0020 0BA4 0BCB 0BB4 0BC0 0BA8 0BBE 0BA9

0BCD 0020 000A 0020 000A

3.6. Conversion of the Unicode Representation to Editable

Text File.

Conversion of Unicode representation to an editable text

file involves a systematic process of interpreting the Unicode

characters and rendering them as readable text. This process

transforms the numerical Unicode values into their

corresponding textual counterparts. Subsequently, these

decoded characters are structured and organized into a

coherent format to generate a text file.

3.6.1. Unicode Character to Editable Text Conversion

Algorithm

Input: U be the set of Unicode characters.

Output: T be the set of editable text characters.

 The conversion algorithm can be represented as follows:

1. Given a Unicode string SU of length n, represented as

SU=(u1, u2,...,un), where ui is the ith Unicode character.

2. The algorithm iterates through each Unicode character

and decodes it back into its corresponding editable text

character.+

3. STbe the resulting editable text string obtained after

decoding.

 ST=decode(SU)

The decoding process involves the transformation of a

Unicode string, represented as SU=(u1,u2,...,un), where each ui

is a Unicode character, into an editable text string ST. Each

Unicode character is decoded back into its corresponding

editable text character using the rules defined by the Unicode

standard.

This step ensures accurate conversion, maintaining

fidelity between the original Unicode representation and the

resulting editable text. As each Unicode character is decoded,

the corresponding editable text character is appended to a new

string. This algorithmic approach ensures the creation of an

editable text file containing the converted Unicode characters,

facilitating easy editing and manipulation of text data. The

tamil text of Figure 7 is given below.

வாரண மாயிரம் சூழவ லம்செய்து

நாரண நம்பி நடக்கின்றா சனன்சறதிர ்

பூரண ச ாற்குடம் வவத்து ் புறசமங்கும்

ததாரணம் நாட்டக் கனாக்கண்தடன்

ததாழீநான்

The proposed system introduced language-specific

models for Tamil, Telugu, Kannada, and Malayalam,

integrated into a unified framework for multilingual

recognition, and this approach set a new benchmark in the

field of Braille image conversion systems, significantly

improving accessibility and literacy for the visually impaired.

4. Experimental Results
The experimentation of the algorithms was carried out on

Tamil, Telugu, Malayalam, and Kannada Braille Image. Some

of the experimental results are shown below in Tables 2 and

3.

Table 2. Conversion of braille image to its corresponding language (Tamil & Telugu)

Tamil Braille Image to Editable Text Telugu Braille Image to Editable Text

Tamil Braille Image

Telugu Braille Image

G. Gayathri Devi / IJETT, 73(3), 436-447, 2025

445

Preprocessed Image

Preprocessed Image

Number String Conversion

1 13 1235 0020 134 136 2345 123 0020 26 12356 136

2345 4 2345 26 123 4 123 345 134 4 0020 345 2345 24

000A 1234 13 1236 56 4 0020 134 136 2345 12456 4

12456 16 0020 136 123 13 136 0020 0020 000A

Number String Conversion

146 136 145 4 2346 0020 12 4 1235 125 4 134 0020 1234

1235 345 2345 4 1234 1235 0020 1235 345 134 0020 13 345

123 345 2345 4 134 13 0020 1234 1235 134 16 146 4 1236

1235 0020 1235 345 134 000A 146 16 12346 2345 123 4

1234 0020 234 136 46 1345 24 145 4 1235 24 2345 0020

1235 345 134 0020 12 4 1235 125 4 134 145 4 13456 134

1235 0020 1234 4 1235 345 1235 4

Tamil Unicode Conversion

0B85 0B95 0BB0 0020 0BAE 0BC1 0BA4 0BB2 0020

0B8E 0BB4 0BC1 0BA4 0BCD 0BA4 0BC6 0BB2 0BCD

0BB2 0BBE 0BAE 0BCD 0020 0B86 0BA4 0BBF 000A

0BAA 0B95 0BB5 0BA9 0BCD 0020 0BAE 0BC1 0BA4

0BB1 0BCD 0BB1 0BC7 0020 0B89 0BB2 0B95 0BC1

000A

Telugu Unicode Conversion

0C36 0C41 0C26 0C4D 0C27 0020 0C2C 0C4D 0C30 0C39

0C4D 0C2E 0020 0C2A 0C30 0C3E 0C24 0C4D 0C2A 0C30

0020 0C30 0C3E 0C2E 0020 0C15 0C3E 0C32 0C3E 0C24

0C4D 0C2E 0C15 0020 0C2A 0C30 0C2E 0C47 0C36 0C4D

0C35 0C30 0020 0C30 0C3E 0C2E 000A 0C36 0C47 0C37

0C24 0C32 0C4D 0C2A 0020 0C38 0C41 0C16 0C28 0C3F

0C26 0C4D 0C30 0C3F 0C24 0020 0C30 0C3E 0C2E 0020

0C2C 0C4D 0C30 0C39 0C4D 0C2E 0C26 0C4D 0C2F 0C2E

0C30 0020 0C2A 0C4D 0C30 0C3E 0C30 0C4D 0C27 0C3F

0C24 0020 0C30 0C3E 0C2E 000A

Editable Tamil Text

அகர முதல எழுத்சதல்லாம் ஆதி

 கவன் முதற்தற உலகு

Editable Telugu Text

శుద్ధ బ్రహ్మ పరాత్ప ర రామ కాలాత్మ క పరమేశ్వ ర రామ

శేషత్ల్ప సుఖనిబ్ిత్ రామ బ్రహ్మ ద్య మర బ్ార్ధ ధత్ రామ

 Table 3. Conversion of braille image to its corresponding language (Kannada & Malayalam)

Kannada Braille Image to Editable Text Malayalam Braille Image to Editable Text

Kannada Braille Image

Malayalam Braille Image

Preprocessed Image

Preprocessed Image

G. Gayathri Devi / IJETT, 73(3), 436-447, 2025

446

Number String Conversion

146 4 1235 35 0020 14 13 4 1235 0020 2346 345 1235 24

1245 26 0020 146 24 1235 12 345 1245 24 0020 123 345

123 24 000A 1235 345 245 35 1236 1345 16 2345 4 1235

1345 24 1245 26 0020 1235 345 134 3456 35 13456 0020

123 345 123 24 0020 0020 000A

Number String Conversion

2345 26 456 24 134 345 1345 56 0020 134 12356 1236 24

123 4 123 24 0020 1345 24 12456 134 3456 24 13456 136

56 0020 1345 16 1235 56 000A 1345 24 12456 134 345

1345 4 1345 1346 1235 136 0020 13 1345 1236 26 1345 4

1345 24 0020 2345 26 456 24 13456 136 1345 4 1345 0020

1234 135 123 26 000A

Kannada Unicode Conversion

0CB6 0CCD 0CB0 0CC0 0020 0C9A 0C95 0CCD 0CB0

0020 0CA7 0CBE 0CB0 0CBF 0C97 0CC6 0020 0CB6

0CBF 0CB0 0CAC 0CBE 0C97 0CBF 0020 0CB2 0CBE

0CB2 0CBF 000A 0CB0 0CBE 0C9C 0CC0 0CB5 0CA8

0CC7 0CA4 0CCD 0CB0 0CA8 0CBF 0C97 0CC6 0020

0CB0 0CBE 0CAE 0CA3 0CC0 0CAF 0020 0CB2 0CBE

0CB2 0CBF 000A

Malayalam Unicode Conversion

0D24 0D46 0D33 0D3F 0D2E 0D3E 0D28 0D02 0020 0D2E

0D34 0D35 0D3F 0D32 0D4D 0D32 0D3F 0D7B 0020

0D28 0D3F 0D31 0D2E 0D23 0D3F 0D2F 0D41 0D02 0020

0D28 0D47 0D30 0D02 000A 0D28 0D3F 0D31 0D2E

0D3E 0D7C 0D28 0D4D 0D28 0D4A 0D30 0D41 0020

0D15 0D28 0D35 0D46 0D28 0D4D 0D28 0D3F 0D7D

0020 0D24 0D46 0D33 0D3F 0D2F 0D41 0D28 0D4D 0D28

0020 0D2A 0D4B 0D32 0D46 000A 0020 0CB0 0CBE

0CAE 0CA3 0CC0 0CAF 0020 0CB2 0CBE 0CB2 0CBF

000A

Editable Kannada Text

ಶ್ರ ೀ ಚಕ್ರ ಧಾರಿಗೆ ಶ್ರಬಾಗಿ ಲಾಲಿ

ರಾಜೀವನೇತ್ರ ನಿಗೆ ರಾಮಣೀಯ ಲಾಲಿ

Editable Malayalam Text

തെളിമാനം മഴവില്ലിൻ നിറമണിയ ം നനരം

നിറമാർതനാര കനതവനിൽ തെളിയ ന

ന ാതെ

Experimental results show that the proposed method has

a good performance in converting any southern Indian Braille

into its language script.

5. Conclusion
The utilization of the Braille system for reading and

writing has been long-standing among individuals with visual

impairments. This paper presents a novel approach aimed at

converting scanned Braille documents in four southern Indian

languages into editable text files. The process initiates with

preprocessing the Braille documents to enhance the dots and

reduce noise interference. Following this, the Braille cells

undergo segmentation, and the dots within each cell are

extracted and converted into a location sequence. These

sequences are then mapped to the corresponding alphabets of

the respective language. The resulting converted text can

further be synthesized into speech using any speech

synthesizer. Experimental results demonstrate the

effectiveness of the proposed method in accurately converting

Braille script to text. The research successfully translates

Braille scripts from Tamil, Telugu, Kannada, and Malayalam

into their corresponding languages, giving potential

extensions the ability to recognize and convert other Indian

Braille script languages in the future. This development marks

a significant stride towards improving accessibility and

inclusivity for visually impaired individuals in southern India.

By accurately interpreting Braille characters in native

languages such as Tamil, Telugu, Kannada, and Malayalam,

this system addresses the crucial need for effective tools to

access written information.

Future work will focus on integrating deep learning

models for further accuracy improvements, extending the

system to support additional languages, and developing

mobile applications for real-time Braille reading.

References
[1] Barry Hampshire, Working with Braille: A Study of Braille as a Medium of Communication, The UNESCO Press, 1981. [Google Scholar]

[Publisher Link]

[2] Jan Mennens, “Optical Recognition of Braille Writing,” Proceedings of 2nd International Conference on Document Analysis and

Recognition, Tsukuba, Japan, pp. 428-431, 1993. [CrossRef] [Google Scholar] [Publisher Link]

[3] Jan Mennens, “Optical Recognition of Braille Writing Using Standard Equipment,” IEEE Transactions on Rehabilitation Engineering,

vol. 2, no. 4, pp. 207-212, 1994. [CrossRef] [Google Scholar] [Publisher Link]

[4] Braille, Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Braille

https://malayalam.samayam.com/topics/%E0%B4%A4%E0%B5%86%E0%B4%B3%E0%B4%BF%E0%B4%AE%E0%B4%BE%E0%B4%A8%E0%B4%82-%E0%B4%AE%E0%B4%B4%E0%B4%B5%E0%B4%BF%E0%B4%B2%E0%B5%8D%E0%B4%B2%E0%B4%BF%E0%B5%BB
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Working+with+Braille%3A+A+study+of+Braille+as+a+medium+of+communication+BARRY+HAMPSHIRE&btnG=
https://policycommons.net/artifacts/10700238/working-with-braille/11607373/
https://doi.org/10.1109/ICDAR.1993.395702
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Jan+Mennens%2C+Optical+recognition+of+Braille+writing&btnG=
https://ieeexplore.ieee.org/document/395702
https://doi.org/10.1109/86.340878
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optical+Recognition+of+Braille+writing+using+Standard+Equipment&btnG=
https://ieeexplore.ieee.org/document/340878
https://en.wikipedia.org/wiki/Braille

G. Gayathri Devi / IJETT, 73(3), 436-447, 2025

447

[5] Specification 800:2014 Braille Books and Pamphlets, National Library Service for the Blind and Physically Handicapped, Library of

Congress, 2014. [Online]. Available: https://www.loc.gov/nls/wp-content/uploads/2019/09/Spec800.11October2014.final_.pdf

[6] Bharati Braille, Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Bharati_Braille

[7] Andrean Ignasius et al., “Image Pre-Processing Effect on OCR's Performance for Image Conversion to Braille Unicode,” Procedia

Computer Science, vol. 227, pp. 922-931, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[8] Sana Shokat et al., “Characterization of English Braille Patterns Using Automated Tools and RICA Based Feature Extraction Methods,”

Sensors, vol. 22, no. 5, pp. 1-23, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[9] Falgoon Sen Apu et al., “Text and Voice to Braille Translator for Blind People,” 2021 International Conference on Automation, Control

and Mechatronics for Industry 4.0, Rajshahi, Bangladesh, pp. 1-6, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[10] S. Arockia Kinsely Felix et al., “Enhancing Braille Code Conversion to Text in Multiple Languages,” i-Manager's Journal on Digital

Signal Processing, vol. 8, no. 2, pp. 31-36, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[11] Purvang Patel, V.V. Hanchate, and R.S. Kamathe, “Text To Braille Conversion For Real-Time Teaching (For Grade III Braille),” Natural

Volatiles & Essential Oils Journal, vol. 8, no. 6, pp. 3939-3945, 2024. [Publisher Link]

[12] Ghazanfar Latif et al., “Learning at Your Fingertips: An Innovative IoT-Based AI-Powered Braille Learning System,” Applied System

Innovation, vol. 6, no. 5, pp. 1-18, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[13] Sana Shokat, “Analysis and Evaluation of Braille to Text Conversion Methods,” Mobile Information Systems, vol. 2020, pp. 1-14, 2020.

[CrossRef] [Google Scholar] [Publisher Link]

[14] Changjian Li, and Weiqi Yan, “Braille Recognition Using Deep Learning,” Proceedings of the 4th International Conference on Control

and Computer Vision, Macau China, pp. 30-35, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[15] Robert Englebretson, M. Cay Holbrook, and Simon Fischer-Baum, “A Position Paper on Researching Braille in the Cognitive Sciences:

Decentering the Sighted Norm,” Applied Psycholinguistics, vol. 44, no. 3, pp. 400-415, 2023. [CrossRef] [Google Scholar] [Publisher

Link]

[16] J.M. Jennis Oliviya, J. Vijayakumar, and A. Hemalatha, “Conversion of Tamil Braille into Text Information Using the DCNN Technique,”

International Journal of All Research Education and Scientific Methods, vol. 11, no. 4, pp. 575-579, 2023. [Publisher Link]

[17] Ian Herrera, Juan J. Carreras, and Rutilio Nava, “Voice-to-Braille Translation System for Promoting Braille Learning,” International

Journal of Engineering and Technology, vol. 16, no. 1, pp. 52-56, 2024. [Publisher Link]

[18] Urooj Beg, K. Parvathi, and Vinod Jha, “Text Translation of Scanned Hindi Document to Braille via Image Processing,” Indian Journal

of Science and Technology, vol. 10, no. 33, pp. 1-8, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[19] Ganga Gudi, Mallamma V. Reddy, and M. Hanumanthappa, “Efficient Approach for Braille Conversion of Multilingual Text: Strategic

Mapping Solutions,” International Journal of Engineering Technology and Management Sciences, vol. 7, no. 4, pp. 653-659, 2023.

[CrossRef] [Publisher Link]

[20] Meneses-Claudio, W. Alvarado-Diaz, and A. Roman-Gonzalez, “Classification System for the Interpretation of the Braille Alphabet

through Image Processing,” Advances in Science, Technology and Engineering Systems Journal, vol. 5, no. 1, pp. 403-407, 2020.

[CrossRef] [Google Scholar] [Publisher Link]

https://www.loc.gov/nls/wp-content/uploads/2019/09/Spec800.11October2014.final_.pdf
https://en.wikipedia.org/wiki/Bharati_Braille
https://doi.org/10.1016/j.procs.2023.10.599
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Image+Pre-Processing+Effect+on+OCR%27s+Performance+for+Image+Conversion+to+Braille+Unicode&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050923017660
https://doi.org/10.3390/s22051836
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Characterization+of+English+Braille+Patterns+Using+Automated+Tools+and+RICA+Based+Feature+Extraction+Methods&btnG=
https://www.mdpi.com/1424-8220/22/5/1836
https://doi.org/10.1109/ACMI53878.2021.9528283
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Text+and+Voice+to+Braille+Translator+for+Blind+People&btnG=
https://ieeexplore.ieee.org/document/9528283
https://doi.org/10.26634/jdp.8.2.18180
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+Braille+Code+Conversion+to+Text+in+Multiple+Languages&btnG=
https://www.imanagerpublications.com/article/18180
https://www.nveo.org/index.php/journal/article/view/4165
https://doi.org/10.3390/asi6050091
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning+at+Your+Fingertips%3A+An+Innovative+IoT-Based+AI-Powered+Braille+Learning+System&btnG=
https://www.mdpi.com/2571-5577/6/5/91
https://doi.org/10.1155/2020/3461651
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+and+evaluation+of+Braille+to+Text+conversion+methods&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1155/2020/3461651
https://doi.org/10.1145/3484274.3484280
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Braille+Recognition+Using+Deep+Learning&btnG=
https://dl.acm.org/doi/abs/10.1145/3484274.3484280
https://doi.org/10.1017/S0142716423000061
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+position+paper+on+researching+braille+in+the+cognitive+sciences%3A+decentering+the+sighted+norm&btnG=
https://www.cambridge.org/core/journals/applied-psycholinguistics/article/position-paper-on-researching-Braille-in-the-cognitive-sciences-decentering-the-sighted-norm/64946B5F1007FE52140E1C4C5AFB356E
https://www.cambridge.org/core/journals/applied-psycholinguistics/article/position-paper-on-researching-Braille-in-the-cognitive-sciences-decentering-the-sighted-norm/64946B5F1007FE52140E1C4C5AFB356E
https://www.ijaresm.com/uploaded_files/document_file/Jennis_OliviyaxLH9.pdf
https://www.ijetch.org/show-133-1498-1.html
https://dx.doi.org/10.17485/ijst/2017/v10i33/112335
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Text+Translation+of+Scanned+Hindi+Document+to+Braille+via+Image+Processing&btnG=
https://indjst.org/articles/text-translation-of-scanned-hindi-document-to-braille-via-image-processing
https://doi.org/10.46647/ijetms.2023.v07i04.091
https://ijetms.in/Vol-7-issue-4/Vol-7-Issue-4-91.html
http://dx.doi.org/10.25046/aj050151
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Classification+System+for+the+Interpretation+of+the+Braille+Alphabet+through+Image+Processing&btnG=
https://www.astesj.com/v05/i01/p51/

