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Abstract - Studies of propagation and diffraction of waves in the medium with wells are an urgent task in geophysics and 

geology. The present work is devoted to studying a cylindrical reinforced well with a liquid located in a viscoelastic 

medium. It is shown that the wave field observed in the well can be represented by a combination of different waves (hydro 

waves, water), differing in characteristic dispersion, spectrum behavior, and field distribution along the radius of the well. 

Dispersion curves of phase and group velocities are calculated for media with different viscoelastic parameters. It is 

found that at cutoff frequencies, transverse waves have abnormally low attenuation. It is revealed that at low phase 

velocities (hydro waves), with increasing wavelength, the real and imaginary parts of the phase velocity monotonically 

increase. 
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1. Introduction 
In recent years, during geophysical studies of wells and 

near the borehole space, much attention has been paid to 

the propagation of low-frequency and high-frequency limit 

waves. Real media have absorption for shear and 

volumetric deformations, which should be taken for 

attention in field geophysics when isolating oil and gas 

reservoirs by acoustic method [1,2]. Several works are 

devoted to studying the propagation of elastic vibrations in 

wells filled with liquid [3,4]. Meanwhile, as several data 

show, the attenuation of the transverse wave turns out to be 

the most sensitive to the parameters of collectors [5]. In [6], 

the dispersion equation for normal waves in the 

axisymmetric case is obtained, and the dispersion of hydro 

waves is studied. Also, in [7], a solution is constructed for 

the case of a source arbitrarily located in a well. In the 

article [8], a formal solution to the well-point source field 

problem is constructed. In [9, 10], attention is paid to the 

propagation of Stoneley waves and their low-frequency 

limit – hydro waves. In recent times, the theory of 

propagation of Stoneley and hydro waves has been built 

quite fully, which takes into account various details of the 

structure of the well [11,12]. 

[13] considered the acoustic characteristics in the 

metaverse environment with these evolving virtual spaces.  

The article [14] analyses the prospects for applied 

mathematical and algorithmic support usage to study the 

sealing capability of contact shut-off valve sealing joints.  

In work [15], the performance of two methods is 

compared for identifying dominant low-frequency 

vibrations.  

 The article [16] analyzes the reflection coefficient and 

high wave transmission coefficient on change in the 

coefficient of pipe wall roughness. 

The article [17]  for approximating and solving two-

point boundary value problems deals with applying two   

Finite Difference discretization (Redlich-Kister) schemes.  

In the article [18], several denoising methods are 

proposed to improve image quality.  

In the present work, the propagation of natural waves of 

low-frequency and the high-frequency limit is investigated. 

 

2. Methods 
2.1. Problem statement and solution methods 

In an infinite viscoelastic medium ( ), a 

multilayer well (1( ), 2( ), N 

( ) )  with a liquid ( ) is located. At 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Safarov I.I et al. / IJETT, 70(6), 252-256, 2022 

 

253 

a point with coordinates , there is a point 

source of the delta function type . The wave 

propagation velocity and density in the corresponding 

media are denoted by  Equations 

of motion of the medium and the well, for longitudinal  

and transverse  potentials, are represented as 
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Here  - are the relaxation cores. 

In equations (1), put  if there is a liquid in the 

pipe space. As is known, the voltages  and mixing 

 are determined through the potentials  by 

the equalities 
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Here  is the operator modulus of elasticity of the form: 
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– arbitrary function, – instantaneous elastic 

modulus. 

For example, let us consider a plate ( ) 

located in a viscoelastic medium ( ). At the interface 

of a viscoelastic medium with a liquid, the boundary 

conditions of the non-existence of normal components of 

mixing and stresses and the equality of tangential stresses 

in a solid to zero are met: 
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To solve the system of integro-differential equations (1)-

(4),  take the Laplace and Fourier-Bessel transformations 
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where  are, respectively, the Bessel, Hankel 

functions of the zero and first order of the second kind, k- 

is the wave number, 

 

 

For the integrand functions in solution (5) to be 

unambiguous, from points  of the plane of the 

complex variable ,  draw sections into the left half-plane 

parallel to the real axis, and fix the branches of radicals 

 with the condition  at . 

It can be shown that there is no complete field at the point 

of branching. In solution (5), the unknown constants 

are determined from the boundary conditions (4). Then get 

an inhomogeneous system consisting of seven algebraic 

(complex) equations. This system is solved by the Gauss 

method by allocating the main element. By equating the 

main determinant of the system to zero, get the dispersion 

equation. An elastic mechanical system is considered if the 

deformable element's rheological properties are not 

considered.  

If the physical and mechanical parameters of the 

deformable medium of the well are the same, then it will be 

possible to determine unknown arbitrary constants in the 

form analytically  
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Expressions (5) and (6) are solutions to the problem 

for the potential of fields in the well and medium.  

The study of wave propagation in liquids has practical 

applications in acoustic logging. When paying attention to 

the viscoelastic properties of the material, the arguments of 

cylindrical functions become complex, making it difficult 

to calculate kinematic parameters. 

Using (2) and (5), it will be possible to obtain the 

corresponding displacements and stresses in the medium 

and well if the point source is zero. Then, using boundary 

conditions to determine arbitrary integral constants get the 

system of homogeneous algebraic equations. For a system 

of homogeneous algebraic equations to have nontrivial 

solutions, a sufficiently basic determinant of this system 

must be zero. From this consideration, get a transcendental 

equation in the form 

.                         (7) 

  It is known that the field of damped normal waves 

arising in a viscoelastic medium is described by deductions 

in the dispersion equation. Suppose in the equations of 

motion of the core, the relaxation of the medium and the 

well are equal to zero. In that case, the real roots 

correspond to undamped waves, which change their 

amplitude in the propagation process only due to geometric 

divergence and dispersion. Complex roots describe damped 

waves (or leaky waves), which have an additional 

exponential attenuation with distance due to energy 

radiation to infinity.   

  It can be shown that the transcendental equation (7) 

has complex roots in the left half-plane  and 

purely imaginary roots on the axis . To estimate 

the emerging waves, it is necessary to pay to attend the 

dispersion equation 

        (8) 

      The number of roots and their position depends on the 

parameter  As the parameter  increases, the number 

of roots located on the imaginary axis increases. Complex 

roots correspond to damped oscillations. The real parts  

correspond to the phase velocities of the propagating 

waves, and the imaginary parts mean the damping rate 

coefficient. Purely imaginary roots lying on the axis 

 correspond to aperiodic oscillations.  

  The roots of equation (7) can be divided into two 

classes. The first class includes those of them that 

are at a finite distance from the origin. All other 

roots belong to the second class. The roots of the first-class 

describe vibrations whose spectrum begins with zero 

frequency.  

  In the well, the limiting cases of phase velocities when 

 and  are of great practical importance. 

According to this classification, there are two types of 

normal waves in the well: hydro and water waves.  

When the material's rheological properties are 

considered, all the dispersion equation's roots will become 

complex. The real part of the phase velocity varies up to 

5%. Imaginary parts increase to 20%.  

Hydro waves can be obtained if we go to the limit in 

equation (8) .  

Then 

 .         (9) 
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It follows from formula (9) that  it is always less than 

the velocity  of sound in water when the inequality 

 is fulfilled. And also,  it is less than 

. If then the velocity of the hydro wave  

monotonically approaches the velocity  of the Stoneley 

surface wave at the flat boundary of a liquid and a solid 

          (10) 

It has a real root  .  

Let's call water waves vibrations, the phase velocities 

of which, with increasing frequency, tends to the speed of 

sound  in an infinite liquid.  

3. Results and Analysis 
The dispersion equation (8) is solved numerically by 

the Muller method.   The dependences of phase velocities 

on the wavelength are investigated. It is revealed that at low 

phase velocities, the phase velocity monotonically 

increases with increasing wavelength. The equations are 

reduced to the Helmholtz equation, the solution of which is 

expressed in terms of the Bessel and Hankel functions.  

  An efficient algorithm and programs for calculating 

special Bessel and Hankel functions have been developed. 

Equation (8) is solved numerically by the Muller method.  

     Numerical results are obtained for the following 

parameter values:  

for liquid:  ; 

for the good shell:      

,а=20sm; 

for surrounding viscoelastic medium: 

;  

And also, for the parameters of the relaxation kernel, 

 let's take the following values:     

. The calculation results are 

shown in Figures 1-2. 

 

From the analysis of numerical results, it turns out that 

the dispersion of hydro waves can beat normal or abnormal, 

which is determined primarily by the relationship between 

the speed of sound in a liquid  and the speed  of 

transverse waves in a medium. The velocity of the 

longitudinal waves of the medium practically does not 

affect the kinematic characteristics (real and imaginary 

parts of the phase velocities) of hydro waves.   

 

4. Conclusion 
1. It is revealed that at low phase velocities (hydro wave) 

with increasing wavelength, the real and imaginary 

parts of the phase velocity monotonically increase. 

2. It was found that the velocity of the hydro 

wave  monotonically approaches the velocity  of 

the Stoneley surface wave at the flat boundary of the 

liquid and the viscoelastic body. 

3. It is determined that the nature of the change in phase 

velocities (real and imaginary parts) are almost the 

same. In the region of long waves, the phase velocities 

monotonically increase, and in the region of short 

waves, they approach the asymptotic.  

 
Fig. 1 Dependence of the real and imaginary parts of the phase 

velocity of the hydro wave on the wave number. 

 

1. Re( ), ; 2. Re( ), ;  

3. , ; 

4. ,/ . 

 

Fig. 2 Dependence of the real part of the phase velocity of 

the hydro wave on the wave number at different values 

 (the ratio of the velocity of transverse waves 

to the longitudinal) of the environment :  1. ; 

2. ; 3. ; 4. ; 5. 
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